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Abstract 

Drug-Target Interaction (DTI) prediction plays a vital role in drug discovery. Recent advances in Artificial 

Intelligence (AI) have enabled automatic extraction of high-order features from biological data, reducing the 

need for manual feature engineering. While multi-view AI models improve prediction accuracy and robustness 

by integrating diverse data sources, they still face key limitations: (1) the use of single-scale sequence tokenizers 

which fail to capture biological information across multi granularities, and (2) shallow, single-layer view 

integration which overlooks the hierarchical biological relationships. To tackle these challenges, we propose the 

concept of “bio-token” and design a multi-scale biological tokenizer capable of preserving multi-resolution of 

biological features. We also introduce a novel Hierarchical Multi-Bio-View Learning (HMBV) approach, 

implemented in an end-to-end DTI prediction network termed HMBVIP. Our model combines the biological 

sequence view and graph view at the top level, while integrating the global evolutionary view with the local 

biochemical view at the second level. This hierarchical multi-view strategy enriches hidden representations with 

multi-dimensional biological context, thereby enhancing DTI prediction accuracy and biologically meaningful 

interpretation. Extensive experiments on benchmark datasets (DAVIS, KIBA and BindingDB) demonstrate that 

HMBVIP consistently outperforms current state-of-the-art models, highlighting its superior predictive capability. 

Keywords: Bio-Token; Drug-Target Interaction (DTI); Drug Discovery; Multi-View Learning; Graph Attention;

1.Introduction 

Drug-target Interaction (DTI) prediction plays a crucial role in the process of new drug discovery 1,2. By 

utilizing biological and chemical data, it enables the rapid screening of compounds with high affinity for specific 

targets, thus significantly improving hit rates and substantially reducing experimental costs. Beyond primary 

screening, DTI prediction also assists in designing multi-target drugs for complex diseases, and supports drug 

repurposing effects by uncovering new therapeutic uses for existing compounds, saving time and resources 3. 

Moreover, it aids in the detection of potential off-target effects 4,5, contributing to reduced drug side effects and 

enhanced drug safety. These capabilities make DTI prediction a valuable tool in advancing personalized 

medicine, and improving the precision and efficacy of drug interventions 6,7. 

Computational models for DTI have becoming popular for accelerating drug discovery and reducing 

development costs. Recent advances in machine learning have significantly contributed to the substantial 

progress in DTI prediction modelling 8. Notably, heterogeneous graph learning methods 9 and relation-aware 

transformers have been developed to model complex drug-target relationships through network integration 10. 
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However, these methods often fail to capture the hierarchical biological semantics inherent in biological data. 

The Kronecker Regularized Least Squares (KronRLS) method 11 integrates drug and target similarity matrices 

through Kronecker products, effectively capturing their interaction relationships and becoming a classic 

approach in this field. Subsequent improvements include SimBoost 12, which combines similarity analysis with 

boosting techniques to enhance predictive performance. DeepDTA 13 shifts toward deep learning by employing 

convolutional neural networks (CNNs) to extract features directly from raw drug and target sequences. More 

recently, GraphDTA 14 has advanced the field by representing molecules as graph structures and employing graph 

neural networks (GNNs) to capture intramolecular relationships. 

Despite the progress in DTI prediction, several challenges remain. Firstly, the complexity of biological 

systems makes it difficult to reliably extract valuable information from complex biological data 15–17. For 

instance, identifying the importance of frequently occurring amino acid fragments in protein sequences is crucial. 

However, many prediction models 18,19, particularly those based on deep learning, exhibit limited biological 

interpretability. This limitation restricts researchers’ ability to derive mechanistic understanding of drug-target 

interactions, thereby introducing uncertainty in high-stakes clinical applications 20. To address these issues, 

multi-view learning methods 21–23 have also been introduced into DTI prediction. These models aim to mine 

deep data features and uncover hidden patterns by leveraging complementary data views, particularly under 

conditions of limited data 24–26. For example, Sheng at el. proposed the MccDTI 27 multi-view representation 

learning method, which integrates heterogeneous drug and target data to learn high-quality, low-dimensional 

representations. The method achieves it by integrating consistent and complementary information from multiple 

views. Similarly, the MINDG model 28 combines deep learning and graph learning to integrate higher-order 

graph information and structured sequential information to further improve the DTI prediction accuracy. Zeng 

et al. proposed the MvGraphDTA method 29, which extracts structural features from drug-target graphs, 

constructs edge-vertex relationships based on line graphs, and fuses the features from the multiple views. 

However, current multi-view DTI prediction methods mainly focus on data-centric views, and neglect 

biologically meaningful perspectives. As a result, these models struggle to identify biologically significant 

features critical to DTI mechanisms 30. In addition, these methods tend to obtain features from single-layer distant 

views, limiting their ability to capture hierarchical and multi-level nature of biological information 31.  

To address the aforementioned issues, we propose a novel Hierarchical Multiple Biological View (HMBV) 

learning method and develop an end-to-end prediction network, termed HMBVIP, as illustrated in Fig. 1. 

HMBVIP encompasses four biologically meaningful views: the global evolutionary view, local biochemical view, 

biological sequence (bio-sequence) view, and biological graph (bio-graph) view. By incorporating these diverse 

perspectives, the model embeds rich biological semantics into its hidden representations, enabling a deeper and 

more comprehensive understanding of drug-target interactions across multiple layers and dimensions. The main 

contributions of this work are summarized as follows:  

⚫ We introduce the concept of “biological token” (bio-token) and propose a multi-scale biological tokenizer that 

segments biological sequences at multiple levels of granularity. Guided by expert biological knowledge, this 

tokenizer generates token sequences enriched with biologically meaningful features, enhancing downstream 

model performance. 
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⚫ We propose a hierarchical multi-bio-view learning method and design an end-to-end prediction network, 

namely HMBVIP. HMBVIP integrates diverse biological views in a layered structure, effectively capturing 

multi-dimensional and hierarchical biological relationships for improved DTI prediction. 

⚫ We conduct comprehensive evaluations of HMBVIP on both general DTI datasets and antiviral drug 

prediction tasks. Experimental results demonstrate that HMBVIP can accurately identify effective therapeutic 

compounds from known drug collections for specific viral diseases, significantly improving screening 

efficiency. 

 
Figure 1. Structure of HMBVIP. The model comprises two core modules: 1) Data Initialization Module (DIM) 

processes drug and protein sequences, 2) Hierarchical Multi-Bio-View (HMBV) extracts drug-target features 

through multiple biological view, The HMBV module consists of three components: Drug-Target Sequence 

Neural Networks (DTSNN), Drug-Target High-Order Graph Attention (DTHOGAT), and Fusion Decision 

Module (FDM). 

2. Materials and Methods 

HMBVIP consists of two modules: the Data Initialization Module (DIM) and the Hierarchical Multi-Bio-View 

(HMBV) module. Within the HMBV module, three key components are integrated: Drug-Target Sequence Neural 

Networks (DTSNN), Drug-Target High-Order Graph Attention (DTHOGAT), and the Fusion Decision Module 

(FDM). This structure employs a hierarchical multi-bio-view learning strategy that operates across two distinct layers 

of biological views. The first layer within DTSNN incorporates the global evolutionary and the local biochemical 

views, while the second layer realized in FDM integrates the bio-sequence view and the bio-graph view. Through 

leveraging these hierarchically organized biological views, HMBVIP effectively uncovers latent patterns and 

interactions between drugs and targets, enriching the semantic depth of latent variables with biologically meaningful 

information. This strategy not only improves the accuracy of DTI but also enhances the model’s biological 

interpretability. The overall architecture of HMBVIP is depicted in Fig. 1. 

2.1 DTI Datasets 

To evaluate the performance of HMVIP, we used two widely used benchmark datasets: DAVIS, KIBA and 

BindingDB. The characteristics of each dataset are outlined below. 

The DAVIS 25,32 dataset includes clinically relevant kinase inhibitors and their dissociation constants (kinase 

dissociation constant Kd  ), encompassing 25,772 drug-target pairs, covering 68 drugs and 379 different target 

proteins. The connection label in the data is the Kd value. To enhance the stability of the training process, we adopted 

the method from Öztürk et al., converting the original Kd values into their logarithmic form 𝑝𝐾𝑑 , with the specific 

conversion as shown in Eq. (1). 
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𝑝𝐾𝑑 = − 𝑙𝑜𝑔 10 (
𝐾𝑑

1𝑒9
) (1) 

where 𝑝𝐾𝑑  is the binding affinity between a drug and a target. A 𝑝𝐾𝑑  value of 7 or higher indicates a strong 

interaction between the drug and the target. 

In the KIBA 6,25 study, the dataset was integrated by combining IC50, 𝐾𝑖 , and 𝐾𝑑 labels to enhance information 

complementary. This research focuses on a sub-dataset for in-depth analysis. The sub-dataset uses 𝐾𝑑 values as the 

key labels and includes 117,657 drug-target pairs involving 2,068 different drugs and 229 target proteins. Based on 

Eq. (1), the 𝐾𝑑 values are converted to 𝑝𝐾𝑑 values and set that a 𝑝𝐾𝑑 value of 12.1 or higher indicates a strong 

interaction between the drug and the target. 

BindingDB 33 is a public, web-accessible database of measured binding affinities, focusing chiefly on the 

interactions of proteins considered to be candidate drug-targets with ligands that are small, drug-like molecules. As of 

March, 2011, BindingDB contains about 650,000 binding data, for 5,700 protein targets and 280,000 small molecules. 

BindingDB also includes a small collection of host–guest binding data of interest to chemists studying supramolecular 

systems. 

A generalized description of the datasets used in the experiments is shown in Table 1. 

Table 1 A Brief Description of The Datasets 

Dataset Drug/Target 
DTI Pairs 

Train (70%) Valid (10%) Test (20%) Total 

DAVIS 68/379 18040 2577 5154 25772 

KIBA 2068/229 82360 11766 23541 117657 

BindingDB 10665/1413 36599 5228 10457 52284 

2.2 Data Initialization Module (DIM) 

The Data Initialization Module (DIM) serves as the module for initializing multiple data. It comprises two primary 

components: the initialization of the sequence data detailed in Section 2.2.1 and the initialization of the graph data 

detailed in Section 2.2.2. 

2.2.1 DTI Sequence Data Initialization Based on Bio-Tokenization 

In the DTI dataset, drug sequences adhere to the SMILES coding convention for chemical symbol sequences 34,35. 

The target protein sequences consist of 20 known amino acids (A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, 

V). These original drug sequences and protein target sequences can be directly obtained from the ‘Drug’ and ‘Target’ 

fields in samples from the DAVIS, KIBA and BindingDB datasets.  

Before utilizaing sequence data for modelling, effective tokenization is essential to preserve biological structure 

and meaning. Protein sequences can be naturally decomposed into fragments at multiple biological scales. Under the 

influence of environmental factors such as temperature and pH levels, proteins break down into polypeptides 36. These 

polypeptides typically consist of 10 to 100 amino acids and are referred to as long-chain peptides. These polypeptides 

can further degrade into oligopeptides or short peptides, which usually contain fewer than 10 amino acids, under the 

influence of hydrolysis reactions, physical methods, or environmental factors 37. The biological terms "protein", 

"polypeptide", "oligopeptide", and "amino acid" represent different scales of amino acid fragments in biological 

semantics 38–40.  

Inspired by hierarchical structure of protein sequences, we introduce the concept of “biological token” (bio-token), 
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which integrates domain-specific biological knowledge with natural language-inspired tokenization strategies. Based 

on this concept, we develop Bio-Tokenizer, a multi-scale biological tokenizer designed to segment protein sequences 

into biologically meaningful fragments. Bio-Tokenizer automatically decomposes amino acid sequences into high-

frequency polypeptide and oligopeptide fragments. 

Drug molecules are composed of the atoms such as carbon, hydrogen, oxygen, nitrogen, sulfur, halogens, 

phosphorus, and metal elements. However, individual atoms cannot effectively characterize the functional semantics 

of drugs 41,42. The functional groups in drug molecules are collections of atoms that impart specific chemical and 

biological properties. As a result, we decompose the drug sequences based on their functional groups, specifically 

involving hydroxyl (-OH), carboxyl (-COOH), keto (-C=O), aldehydes (-CHO), thiols (-SH), sulphur ethers (-S-), and 

together with the halogen atoms (-F, -Cl, -Br, -I), metal elements (Fe, Mg, Zn, Ca, etc.) 41,43. The addition of these 

tokens, which represent the functional semantics of drugs, enhances the vocabulary. This enables Bio-Tokenizer to 

effectively segment drug sequences while preserving their functional semantics. 

The proposed Bio-Tokenizer addresses fundamental limitations in conventional protein sequence processing by 

explicitly preserving evolutionarily conserved functional elements. While standard approaches tokenize protein 

sequences into individual amino acids, this granularity fails to capture biologically meaningful peptide motifs that 

frequently mediate molecular interactions. Our methodology combines evidence-based motif discovery with data-

driven token optimization, first compiling validated functional segments from curated databases including Pfam 44, 

ELM 45, and UniProtKB/Swiss-Prot 46. These biologically significant patterns (e.g., integrin-binding "RGD", SH3 

domain-interacting "PxxP", and nucleotide-binding "GxGxxG" motifs) form the core vocabulary, which is 

subsequently expanded through Byte Pair Encoding (BPE) trained on the UniProtKB reference proteome (release 

2023_03). This hybrid approach ensures coverage of both known functional elements and statistically prevalent 

sequence patterns, with vocabulary items constrained to biochemically plausible lengths (3-15 residues). The tokenizer 

dynamically weights motifs by their evolutionary conservation scores from InterPro, prioritizing high-confidence 

functional units during the segmentation process with the Bio-Tokenization algorithm, which is shown in Algorithm 

I. 

Algorithm I: Bio-Tokenization 

Input: sequence 𝒔𝒓𝒄 = [𝑏1, 𝑏2 … , 𝑏𝐿], 𝐿 is the sequence length; 
UniProtKB and PubChem raw sequences 𝑈𝑝 

Motifs from Published Articles 𝐷𝑚𝑜𝑡𝑖𝑓  

Biological Vocabulary 𝑉𝑏𝑖𝑜 

BPE Vocabulary 𝑉𝑏𝑝𝑒 

Motif max size 𝑘𝑚𝑎𝑥 

Output: Tokenized Sequence 𝒕𝒂𝒓 

Procedure: 

1: 𝑉𝑏𝑖𝑜 ≔ {𝑚 | 𝑚 ∈ 𝐷𝑚𝑜𝑡𝑖𝑓  𝑎𝑛𝑑 𝑙𝑒𝑛(𝑚) ≤ 𝑘𝑚𝑎𝑥} 

2: 𝑉𝑏𝑝𝑒 ≔ 𝐵𝑝𝑒𝑇𝑟𝑎𝑖𝑛𝑒𝑟(𝑈𝑝) 

3: 𝒕𝒂𝒓 ≔ [] 
4: 𝑖 ≔ 1 

5: while 𝑖 ≤ 𝐿 do  

6:   for 𝑙 ≔ min(𝑘𝑚𝑎𝑥 , L − i + 1) to 1 do 

7:     if 𝒔𝒓𝒄[𝑖: 𝑖 + 𝑙 − 1]  ∈  𝑉𝑏𝑖𝑜 then 

8:       𝒕𝒂𝒓. 𝑎𝑝𝑝𝑒𝑛𝑑(𝑆[𝑖: 𝑖 + 𝑙 − 1]) 

9:       𝑖 ≔ 𝑖 + 𝑙 
10:      break 

11:    else if 𝒔𝒓𝒄[𝑖: 𝑖 + 𝑙 − 1]  ∈  𝑉𝑏𝑝𝑒 then 

12:      𝒕𝒂𝒓. 𝑎𝑝𝑝𝑒𝑛𝑑(𝒔𝒓𝒄[𝑖: 𝑖 + 𝑙 − 1]) 
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13:      𝑖 ≔ 𝑖 + 𝑙 
14:      break 

15:    else 

16:      𝒕𝒂𝒓. 𝑎𝑝𝑝𝑒𝑛𝑑(𝒔𝒓𝒄[𝑖]) 

17:      𝑖 ≔ 𝑖 + 𝑙 
18:    end if 

19:   end for 

20: end while 

21: return 𝒕𝒂𝒓 

The processing function of Bio-Tokenizer is shown in Eq. (2)-(3). The Bio-Tokenizer maximally retains the 

biological information of protein sequences and provides support for the biological interpretation of model decisions. 

𝒕 = 𝐵𝑖𝑜𝑇𝑜𝑘𝑒𝑛𝑖𝑧𝑒𝑟(𝒔𝑝𝑟𝑜𝑡𝑒𝑖𝑛) (2) 

𝒅 = 𝐵𝑖𝑜𝑇𝑜𝑘𝑒𝑛𝑖𝑧𝑒𝑟(𝒔𝑑𝑟𝑢𝑔) (3) 

where 𝒔𝑝𝑟𝑜𝑡𝑒𝑖𝑛 is the amino acid sequence, 𝒕 is the peptide sequence that has been sliced by the Bio-Tokenizer, 

𝒔𝑑𝑟𝑢𝑔 is the SMILES sequence of the drug, 𝒅 is the sequence of the drug functional group that has been sliced by 

the Bio-Tokenizer. 

2.2.2 DTI Graph Data Initialization 

As direct association data between drugs and targets are typically unavailable, the drug-target graph should be 

inferred from known DTI datasets. To represent this graph, we construct adjacency matrices that encode the 

connectivity between drug and target nodes, enabling efficient structural analysis.  

The process of constructing a drug-target graph involves three key steps: firstly, nodes are defined to represent 

individual drugs and targets; secondly, edges are introduced between nodes based on known interaction data, reflecting 

potential relationships, and finally, a complete drug-target graph is formed by connecting drug and target nodes 

through the defined edges. Various methods exist for encoding the features of drug and target nodes, such as one-hot 

encoding, BERT model encoding, PSSM feature encoding, and evolutionary encoding. In this study, one-hot encoding 

was employed to represent node features due to its straightforward implementation and ease of interpretation. 

2.3 Hierarchical Multi-Bio-View (HMBV) 

The Hierarchical Multi-Bio-View (HMBV) serves as the core component of HMBVIP, designed to learn interaction 

features through multiple perspectives of DTI data. It consists of three components: the Drug-Target Sequence Neural 

Networks (DTSNN), the Drug-Target High-Order Graph Attention (DTHOGAT), and the Fusion Decision Module 

(FDM). 

2.3.1 Drug-Target Sequence Neural Networks (DTSNN) 

DTI sequence data characterize the internal composition of drug and target with rich structural and biological 

semantic information. To deeply capture these biological semantic features, DTSNN ingeniously incorporates two 

unique biological views: the global evolutionary view and the local biochemical view, as shown in Fig. 2. Building 

upon the insights derived from these two perspectives, DTSNN ultimately generates the bio-sequence view (as 

illustrated in the right gray box of Fig.2). 
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Figure 2. Structure of DTSNN. This module processes drug-target sequences through parallel pathways: 1) Global 

Evolutionary View (top branch) extracts high-level features via Drug-Transformer (drugs) and ProtBert (proteins), 

while 2) Local Biochemical View (bottom branch) captures local patterns using DrugCNN (single-scale) and Multi-

Scale CNN (proteins). Features from both views are concatenated to construct the Bio-Sequence View. 

Global Evolutionary View 

To model drug-target interactions from the global evolutionary view (as illustrated in the top half of Fig. 2), we 

utilize two Transformer-based models equipped with multi-head attention mechanisms: Drug-Transformer and 

ProtBert models 47,48. These models are designed to capture long-range dependencies and global contextual 

information. 

ProtBert is a pre-trained model designed by Elnaggar, specifically for extracting features of orthogonal protein 

sequences 49. Target proteins are synthesized from the transcription of DNA, which themselves characterize biological 

genetic information. ProtBert can capture the evolutionary information of a protein family, thereby extracting the 

evolutionary features of target proteins. Drug-Transformer is a drug sequences model based on the transformer 

architecture, aiming to reveal the deep features of drug chemical atoms, chemical bonds, and structures. When a drug 

has a strong affinity with the target protein, there exists a mapping relationship between the features of the drug and 

the target protein. Therefore, the drug can also indirectly characterize the evolution of the target protein family. Drug-

Transformer obtains the global features of drugs through the global attention mechanism, while also indirectly 

extracting the evolutionary characteristics of the target protein. Finally, we connect the features of drugs and targets 

to obtain the global evolutionary features, as shown in Eq. (4). 

𝒵𝑔𝑙𝑜𝑏𝑎𝑙 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝒟(𝒅), 𝒫(𝒕)) (4) 

where 𝒟(. ) is the unit processing function of Drug-Transformer, 𝒫(. ) is the unit processing function of ProtBert, 

𝒵𝑔𝑙𝑜𝑏𝑎𝑙  is the latent features from the global evolutionary view, 𝒵𝑔𝑙𝑜𝑏𝑎𝑙 ∈ ℝ1∗𝑑𝑔  and 𝑑𝑔 is the global feature size, 

𝑑𝑔 = 𝑑𝑑 + 𝑑𝑡, 𝑑𝑑 is the drug feature size, 𝑑𝑡 is the target protein feature size. 

Local Biochemical View 

For modelling drug-target interactions from the local biochemical view (as depicted in the bottom half of Fig. 2), 

we introduce two custom-designed models: DrugCNN and Multi-Scale CNN, aimed at capturing detailed local 

structural features of drugs and targets, respectively.  

DrugCNN is developed to extract local connection patterns of chemical atoms and bonds within the molecules 50. 

Global Evolutionary View

Local Biochemical View

Drug-

Transformer

ProtBert

Multi-Scale CNN

MLP

Drug-Target

Sequence

DrugCNN

Bio-Sequence

ViewC
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Compared with target proteins, the drugs have lower local structural complexity with lengths less than 100, DrugCNN 

is designed as a single-layer convolutional neural network (CNN), which is sufficient for capturing meaningful local 

structural representations. On the other hand, target protein sequence exhibit much longer sequences, potentially 

20,000 amino acids, which is rich in biochemical information. To effectively capture the intricate local information, 

we design the Multi-Scale CNN, incorporating convolutional kernels of varying sizes to capture complex local 

information at different levels. This architecture allows the model to detect unique biochemical characteristics of the 

amino acid combinations at different scales. Ultimately, we integrate the features of drugs and targets to obtain a more 

comprehensive description of local biochemical features, as shown in Eq. (5). 

𝒵𝑙𝑜𝑐𝑎𝑙 = 𝐶𝑜𝑛𝑐𝑎𝑡(𝒞𝑠𝑠(𝒅), 𝒞𝑚𝑠(𝒕)) (5) 

where 𝒞𝑠𝑠(. ) is the unit processing function for the single kernel convolution and MLP of the drug sequence, 𝑑𝑠 is 

the output feature size of 𝒞𝑠𝑠(. ), 𝒞𝑚𝑠(. ) is the unit processing function for the multi-scale multi-kernel convolutions 

of the target sequence, 𝑑𝑚  is the output feature size of 𝒞𝑚𝑠(. ), and 𝒵𝑙𝑜𝑐𝑎𝑙  is the latent features from the local 

biochemical view, 𝒵𝑙𝑜𝑐𝑎𝑙 ∈ ℝ1∗𝑑𝑙  and 𝑑𝑙 is the local feature size, 𝑑𝑙 = 𝑑𝑠 + 𝑑𝑚. 

2.3.2 Drug-Target High-Order Graph Attention (DTHOGAT) 

From a macroscopic perspective, DTIs encompass complex and structural biological relationships. These 

interactions can be modeled using the adjacency matrix, which captures pairwise associations and serves as the 

foundation for constructing a biological graph that integrates both protein family networks and drug-derived 

relationships.  

We formally define the drug-target graph 𝐺 = (𝒱, ℰ) as an undirected graph, 𝒱 = {𝑣𝑑
1 , … , 𝑣𝑑

𝜂
, 𝑣𝑡

1 , … , 𝑣𝑡
𝜌

}, 𝜂 is 

the total number of drug nodes, 𝜌 is the total number of target protein nodes, ℰ = {(𝑣𝑑
1 , 𝑣𝑡

1), … (𝑣𝑑
𝑖 , 𝑣𝑡

𝑗
), … }, 𝑖 ∈

[1, 𝜂], 𝑗 ∈ [1, 𝜌]. To effectively learn from this graph structure, we proposes a novel drug-target graph network based 

on multilayer high-order graph attention networks (GAT) 14, referred to as DTHOGAT (Fig. 3). DTHOGAT encodes 

the drug-target graph through multiple GAT layers and obtain high-order graph features, as shown in Eq. (6). 

𝐻(𝑙) = ∥
𝑗∈𝑃

𝜎(𝐴̂𝑗𝐻(𝑙−1)𝑊𝑗
(𝑙)

) (6) 

where 𝑃 = {0,1,2, . . . , 𝜁}  is the adjacency power, 𝜁 is maximum of neighborhood of each GAT layer, 𝐴̂𝑗  is the 

adjacency matrix 𝐴̂ multiplied by 𝑗 times, and ∥ denotes column-wise concatenation. 

 
Figure 3. Structure of DTHOGAT. The model extracts drug-target graph features using multiple stacked High-Order 

Graph Attention (HOGAT) layers. In the illustrated graph, colored nodes represent entities (drugs as circles and targets 

as squares), while edges denote known interactions. 

2.3.3 Fusion Decision Module (FDM) 

To enable the integration of multi-perspective data, FDM conducts additional feature extraction on the bio-sequence 
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view derived from DTSNN and the bio-graph view generated by DTHOGAT, respectively. 

 
Figure 4. Structure of FDM, 𝛼  is the views balance parameter, which is a learnable parameter for adaptively 

adjusting the weights of the two views: Bio-Sequence View and Bio-Graph View. 

To further fuse both global and local information of the biological sequence, FDM extracts features from the bio-

sequence perspective using a Multi-Layer Perceptron (MLP), as illustrated in Eq. (7). 

ℛ𝑠𝑒𝑞 = 𝑾2 (𝑅𝑒𝐿𝑈(𝑾1[𝒵𝑔𝑙𝑜𝑏𝑎𝑙; 𝒵𝑙𝑜𝑐𝑎𝑙] + 𝒃1)) + 𝒃2 (7) 

where ℛ𝑠𝑒𝑞is the fusion result of the two views of DTSNN, and 𝒵𝑔𝑙𝑜𝑏𝑎𝑙  and 𝒵𝑙𝑜𝑐𝑎𝑙  are essentially intermediate 

hidden variables of the HMBVIP, 𝑾1 is the first layer weights of MLP, 𝒃1 is the first layer bias, 𝑾2 is the second 

layer weights, 𝒃2 is the second layer bias, 𝑾1 ∈ ℝ(𝑑𝑔+𝑑𝑙)×ℎ, 𝑾2 ∈ ℝℎ×𝑑𝑜𝑢𝑡 , ℎ is the hidden size, 𝑑𝑜𝑢𝑡  is the 

output feature size. 

The link prediction module consists of a Bilinear network and two Linear networks. The Bilinear calculation is 

shown in Eq. (8). ℛ𝑔𝑟𝑎𝑝ℎ is the result of drug-target link prediction in Eq. (9). 

𝒆𝑖𝑗 = 𝐸𝐿𝑈(𝒛𝑖
𝑇𝑊𝑏𝒛𝑗 + 𝑏) (8) 

where 𝒛𝑖 and 𝒛𝑗 is the representations of node 𝑣𝑑
𝑖  and 𝑣𝑡

𝑗
, 𝒆𝑖𝑗 is the edge representation, 𝐸𝐿𝑈(. ) is exponential 

linear unit function. 

ℛ𝑔𝑟𝑎𝑝ℎ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝐹𝐶2 (𝐸𝐿𝑈 (𝐹𝐶1(𝒆𝑖𝑗)))) (9) 

In the FDM module, we fuse the bio-sequence and bio-graph views using a weighted summation method, as 

illustrated in Fig. 4. The core idea of this method is to assign a tunable importance to each view. The weight of the 

bio-graph view is controlled by the balance coefficient 𝛼 while the bio-sequence view is weighted by 1 − 𝛼, as 

illustrated in Eq. (10). To enable adaptive view fusion, 𝛼 is set as a trainable parameter and is initialized at 0.8. 

ℛ = 𝛼 ∗ ℛ𝑔𝑟𝑎𝑝ℎ + (1 − 𝛼) ∗ ℛ𝑠𝑒𝑞  (10) 
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2.4 Hierarchical Multiple Biological View Learning 

Hierarchical Multiple Biological View (HMBV) learning involves the joint training of multiple views. By 

accounting for the unique attributes of each view, we employ the cross-entropy loss function. To prevent overfitting, 

the HMBV incorporates an L2 regularization term, as illustrated in Equation (11). 

ℒ𝐻𝑀𝐵𝑉(𝛩) = − ∑ ℛ𝑙𝑜𝑔ℛ̂

𝑛

𝑖=1

+ 𝛾‖𝛩‖2 (11) 

where Θ is the model parameters and 𝛾 is the influence factor of the L2 regular term, which takes the value of 0.01 

in the experiments. The HMBV learning algorithm is shown in Algorithm 2. 

Algorithm 2: HMBV Learning 

Input: 𝒔𝑝𝑟𝑜𝑡𝑒𝑖𝑛: target amino acid sequence; 𝒔𝑑𝑟𝑢𝑔: drug SMILES raw sequence; 𝐸𝑝: maximal number of 

epochs; 

Output: model parameters Θ 

Procedure: 

1:  for 𝑒 = 1. . 𝐸𝑝 do 

// gain bio-token sequences of DTI 

2:    𝒕 = 𝐵𝑖𝑜𝑇𝑜𝑘𝑒𝑛𝑖𝑧𝑒𝑟(𝒔𝑝𝑟𝑜𝑡𝑒𝑖𝑛) 

3:    𝒅 = 𝐵𝑖𝑜𝑇𝑜𝑘𝑒𝑛𝑖𝑧𝑒𝑟(𝒔𝑑𝑟𝑢𝑔) 

// layer 1 views 

4:    gain global evolutionary view 𝒵𝑔𝑙𝑜𝑏𝑎𝑙  as Eq. (4) 

5:    gain local biochemical view 𝒵𝑙𝑜𝑐𝑎𝑙 as Eq. (5) 

// layer 2 views 

6:    gain bio-sequence view through contacting [𝒵𝑔𝑙𝑜𝑏𝑎𝑙; 𝒵𝑙𝑜𝑐𝑎𝑙] 

7:    gain bio-graph view 𝐺 = (𝒱, ℰ) as Eq. (6) 
8:    predict the results ℛ𝑠𝑒𝑞  and ℛ𝑔𝑟𝑎𝑝ℎ based on the views of step 6 and 7, as Eq. (7) and (9) 

9:    ℛ = 𝛼 ∗ ℛ𝑔𝑟𝑎𝑝ℎ + (1 − 𝛼) ∗ ℛ𝑠𝑒𝑞 

10:   Θ ≔ argmin
Θ

ℒ𝐻𝑀𝐵𝑉  , minimize ℒ𝐻𝑀𝐵𝑉 as Eq. (11) 

11: end for 

12: return Θ 

3. Experiments 

3.1 Metrics 

The HMBVIP model is specifically designed for link prediction regression tasks, aiming to accurately predict the 

binding affinity values between nodes. To comprehensively evaluate the performance of this model, we adopted Mean 

Squared Error (MSE) and Concordance Index (CI) as key evaluation metrics. 

The MSE is calculated by taking the average of the square of the difference between the true value 𝒚𝒊̂ and the 

predicted value 𝒚𝒋, with the specific formula shown in Eq. (12). 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑦𝑗̂ − 𝑦𝑖)

𝟐
𝒏

𝒊=𝟏

 (12) 

where 𝑛 represents the number of drug-target pairs. And a lower MSE indicates superior performance in the link 

prediction. 

The CI is a statistical measure that assesses the degree of concordance between the predicted binding affinity values 

of two drug target pairs and their true values as defined in Eq. (13). 
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𝐶𝐼 =
1

𝑁
∑ ℎ(𝑦𝑖̂ > 𝑦𝑗̂)

2

𝑦𝑖>𝑦𝑗

 (13) 

where 𝑦𝑖̂ is the predicted value of the larger affinity 𝑦𝑖 , 𝑦𝑗̂is the predicted value of the smaller affinity 𝑦𝑗, ℎ(·) is 

a step function as defined in Eq. (14). A higher CI result indicates a more accurate prediction. 

ℎ(𝑥) = {
1, 𝑥 > 0

0.5, 𝑥 = 0
0,  else 

 (14) 

3.2 Baselines 

To evaluate the effectiveness of HMBVIP, we conducted comparative experiments against six representative 

baseline methods: SimBoost 12, KronRLS 51, DeepDTA 13, GraphDTA 14, MccDTI 27 and MvGraphDTA 29. 

The key hyperparameters for the HMBVIP model are detailed in Table 2. During the training phase of HMBVIP, 

the configured parameters include an epoch count of 80, a batch size of 8, and a learning rate of 0.01.  

Table 2 The Hyperparameters of HMBVIP 

Module Parameter Value 

DrugTransformer in DTSNN 

n_layer 3 

n_head 16 

embedding_dim 128 

DrugCNN in DTSNN 

kernel size 3 

feature_in 32 

feature_out 128 

Multi-Scale CNN in DTSNN 

kernel size {2,3,4,5} 

embedding_dim 128 

num_feature_out 32 

DTHOGAT 
hidden_channels 4096 

out_channels 128 

3.3 Prediction performances 

We compared HMBVIP with the baseline methods using 10-fold cross-validation on the datasets. According to 

Table 3, HMBVIP achieved a 12.4% reduction in MSE compared to the best-performing baseline method, 

MvGraphDTA, while also improving the CI 0.7%. Further analysis of the data in Table 3 reveals that HMBVIP exhibits 

even more impressive performance, with an average MSE of only 0.007, lower than the optimal baseline method, 

GraphDTA, and a CI reaching 0.002, higher than that of GraphDTA. From Tables 3, the results demonstrate that 

HMBVIP outperforms other baselines, primarily due to the introduction of the HMBV learning method. The 

hierarchical multi-view learning paradigm of HMBV allows the model to deeply capture the latent representations 

within the data. 

Table 3 Performance Comparison of Different Methods 

Methods 
DAVIS KIBA BindingDB 

MSE↓ CI↑ MSE↓ CI↑ MSE↓ CI↑ 

KronRLS 0.379±0.004 0.871±0.001 0.411±0.011 0.782±0.003 0.562±0.003 0.711±0.008 

SimBoost 0.282±0.002 0.872±0.002 0.222±0.009 0.836±0.001 0.358±0.010 0.884±0.001 

DeepDTA 0.261±0.001 0.878±0.004 0.194±0.007 0.865±0.003 0.329±0.013 0.890±0.007 

GraphDTA 0.254±0.004 0.880±0.002 0.139±0.005 0.889±0.003 0.301±0.003 0.914±0.008 

MccDTI 0.244±0.001 0.899±0.001 0.140±0.007 0.876±0.002 0.284±0.001 0.911±0.001 

MvGraphDTA 0.241±0.002 0.902±0.002 0.138±0.002 0.886±0.004 0.280±0.007 0.921±0.007 

HMBVIP 0.211±0.003 0.908±0.003 0.132±0.005 0.891±0.003 0.261±0.002 0.917±0.008 
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3.4 Bio-Tokenization Analysis 

This experiment was conducted to validate whether biologically meaningful tokenization (preserving functional 

motifs and domains) outperforms atomic-level segmentation in DTI prediction tasks. The normal tokenization, as a 

tagging strategy, typically involves using a single amino acid to identify target protein sequence, while drugs are 

marked with a single SMILES coding symbol. According to the data in Table 4, compared to the normal tokenization, 

the application of HMBVIP in the biological tokenization (Bio-Tokenization) resulted in a 0.9% reduction in MSE 

and a 0.3% increase in CI on DAVIS. Furthermore, the results on KIBA and BindingDB also demonstrate that 

HMBVIP enhances the model's performance through the use of Bio-Tokenization. The core of Bio-Tokenization is 

the concept of “bio-token”. The bio-tokens embed expert biological knowledge, enabling the model to incorporate 

biological information at multiple scales, thereby enhancing the biological relevance of the predictions. 

Table 4 Performance Comparison of Different Tokenization 

Tokenization 
DAVIS KIBA BindingDB 

MSE↓ CI↑ MSE↓ CI↑ MSE↓ CI↑ 

Normal 0.213±0.008 0.905±0.002 0.135±0.003 0.889±0.001 0.277±0.011 0.841±0.001 

Biological 0.211±0.003 0.908±0.003 0.132±0.005 0.891±0.003 0.261±0.002 0.917±0.008 

The choice of biomolecular segmentation strategy fundamentally impacts model interpretability and biological 

relevance. The character-level normal tokenization often fragments functional domains, while Bio-Tokenization 

preserves critical structural and pharmacological motifs essential for meaningful feature learning. 

We further demonstrate the effectiveness of Bio-Tokenization using the sequence segmentation of the SARS-CoV-

2 Spike protein and the antiviral drug Favipiravir as illustrated in Tables 5 and 6. Bio-Tokenization preserves functional 

domains in proteins (e.g., binding sites, enzymatic regions) and pharmacologically relevant fragments in drugs (e.g., 

active moieties, scaffolds). The results demonstrate Bio-Tokenization is able to segment protein sequences and drug 

SMILES into biochemically meaningful units. By maintaining intact biologically significant features, Bio-

Tokenization enables more interpretable biomolecular representations compared to conventional syntactic splitting 

methods. 

Table 5 Bio-Tokenization of SARS-CoV-2 Spike Protein Functional Domains 

Input Sequence Bio-Tokens Annotation Reference 

MFVFLVLLPLVSSQCVNL

TTRT…RGVYYPDKVFRS

SVLHSTQDLFLPFFSNVT

WFHAIHVSGTNGTKRF…

SPRRARS...IGVTQNVLYE

NQKLIANQFNSAI…FIAG

LIAIVMVTIMLCCMTSCC

SCLKGC…T 

MFVFLVLLPLVSSQ

CVNLTTR 

Directs nascent protein to ER; 

cleaved post-translationally. 
UniProt P0DTC2 52 

GVYYPDKVFRSSV

LHSTQDLFLPFFSN

VTWFHAIHVSGTN

GTKR 

Mediates initial host cell 

attachment; contains antigenic 

epitopes. 

UniProt P0DTC2 52 

PRRAR 
Cleaved by furin, increasing 

viral infectivity. 
53 

GVTQNVLYENQKL

IANQFNSA 

Triggers membrane fusion for 

viral entry 
UniProt P0DTC2 52 

IAGLIAIVMVTIML

CCMTSCCSCLKG 

Anchors spike protein to viral 

envelope. 
UniProt P0DTC2 52 

… … … 

*UniProt: the universal protein knowledgebase (https://www.uniprot.org/). 

Table 6 Bio-Tokenization of Favipiravir Bioactive Chemical Motifs 

Input Sequence Bio-Tokens Annotation Reference 
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O=C(O)C1=NC(=C(F)N=C

1N)C1=CC=CC=C1 

 

O=C(O) 

Carboxylate;. Enhances 

solubility and hydrogen 

bonding with viral RNA 

polymerase. 

54 

C1=NC(=C(F)N=C1N 

Pyrazine-fluorouracil core: 

Mimics purine bases in viral 

RNA polymerase. Fluorine 

enhances metabolic stability. 

PubChem CID 

75539484 

C1=CC=CC=C1 

Phenyl ring; Hydrophobic 

interactions with viral protein 

binding pockets. 

55 

*PubChem is a database of chemical molecules and their activities against biological assays (https://pubchem.ncbi.nlm.nih.gov/). 

3.5 Ablation studies 

To assess the effectiveness of the multi-view learning mechanism in HMBVIP, we conducted a series of ablation 

experiments in which each view of HMBVIP was tested. In Table 7, specific notation is used to differentiate between 

views: "E" represents the Evolutionary View, "B" denotes the Biochemical View, "E+B" signifies the fusion of the 

Evolutionary and Biochemical Views in the second layer, which we have designated as the Bio-Sequence View, "G" 

is the Bio-Graph view, and "E+B+G" is the fusion of the Bio-Graph and Bio-Sequence Views in the first layer, which 

is equivalent to the HMBVIP model. 

The results on DAVIS in Table 7 indicate that the combination of “E+B” results in a 1.2% reduction in MSE and a 

0.7% increase in CI compared to using “E” alone. Further observation shows that the combination of “E+B+G” 

reduces MSE by 15.9% and increases CI by 2.5% compared to “E+B”. The results on KIBA and BindingDB further 

indicate that model performance improves consistently with the integration of multiple perspectives, progressing from 

“E” to “E+B” and ultimately to “E+B+G”. 

The results presented in Table 7 collectively suggest that the Global Evolutionary View, Local Biochemical View, 

and Bio-Graph View each play vital roles in enhancing the predictive performance of the HMBVIP model. Notably, 

given that the Bio-sequence View is a synthesis of the Global Evolutionary View and the Local Biochemical View 

(E+B), it can also be considered as an effective approach for optimizing the model’s capabilities. Specifically, the 

Global Evolutionary View captures biologically meaningful patterns within protein and drug sequences, including key 

amino acids, oligopeptides, polypeptides, and atomic groups. The Local Biochemical View extracts fine-grained, 

localized features of the sequences. These two complementary perspectives are concatenated to form the Bio-

Sequence View, which integrates both global contextual and local structural information. In addition, the Bio-Graph 

View models higher-level, global relational features between proteins and drugs based on their interactions. By 

combining these hierarchical biological views from microscopic to macroscopic levels, HMBV enables the extraction 

of more biologically informative features, which are crucial for accurate protein–drug interaction prediction. 

Table 7 Performance Comparison of Different Views 

Views 
DAVIS KIBA BindingDB 

MSE↓ CI↑ MSE↓ CI↑ MSE↓ CI↑ 

E 0.254±0.001 0.880±0.003 0.153±0.009 0.859±0.007 0.295±0.001 0.866±0.005 

E+B 0.251±0.005 0.886±0.002 0.150±0.005 0.868±0.002 0.281±0.002 0.891±0.001 

E+B+G 0.211±0.003 0.908±0.003 0.132±0.005 0.891±0.003 0.261±0.002 0.917±0.008 

3.6 Feature Visualization Analysis 

Characterizing how different biological perspectives contribute to protein representation is essential for 

understanding HMBVIP's multimodal learning mechanism. The t-SNE visualization specifically examines whether 
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evolutionary, biochemical, sequential, and graph-based features form meaningful biological clusters. This section 

evaluates the effectiveness of feature learning from each view in the HMBVIP model. To achieve this, the target 

protein features learned from the Evolutionary View, Biochemical View, Bio-Sequence View, and Bio-Graph View in 

HMBVIP were extracted based on the DAVIS dataset and visualized using t-SNE. 

To elucidate the two-dimensional projections of target protein features, the five target protein classes with the 

highest number of connections to drugs are selected as labels. These five classes are designated as follows: serotonin 

receptor-6 (P50406), histamine H1 receptor (P35367), D (2) dopamine receptor (P14416), cytochrome P450 3A7 

(P24462), and Q9928, each comprising 20 target proteins. As illustrated in Fig. 5, the t-SNE visualization illustrates 

the representation of target protein features from four distinct views. 

 
Figure 5. Visualization of Target Protein Features. (a) Evolutionary View: Protein features exhibit broad dispersion, 

reflecting functional divergence across phylogenetic lineages. (b) Biochemical View: Distinct clusters are observed, 

indicating conserved structural and functional properties among related proteins. (c) Bio-Sequence View: Features 

show relatively uniform distribution, suggesting diversity in sequence-encoded characteristics. (d) Bio-Graph View: 

Tight clustering patterns emerge, demonstrating functional modularity within interaction networks. 

Subsequently, the target protein feature vectors derived from the four views of HMBVIP were transformed into a 

two-dimensional representation using the t-SNE method. In the visualization of the target protein feature, each point 

represents a target protein, and each color represents a distinct category of target proteins. As illustrated, the majority 

of the proteins exhibit the formation of discernible clusters. The target proteins belonging to the same class are situated 

in close proximity to one another within the two-dimensional space. These four distinct 2D visualization plots 

demonstrate that the feature representations learned by HMBVIP effectively capture key interactions while preserving 

the unique attributes of each node. 

(a) Evolutionary View Protein Features (b) Biochemical View Protein Features

(d) Bio-Graph View Protein Features
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3.7 Training Stability Test 

 
Figure 6. Training Convergence Curve of HMBVIP. The training loss curves demonstrate stable optimization 

dynamics for HMBVIP on both DAVIS and KIBA datasets. Initial rapid loss reduction during early epochs transitions 

to gradual convergence, with final stabilization indicating effective model training. Comparative analysis reveals 

lower asymptotic loss values on the DAVIS dataset, consistent with its higher precision binding affinity measurements 

relative to the integrated KIBA scores. Both curves maintain smooth optimization trajectories throughout the 100-

epoch training regimen, with no evidence of overfitting or unstable gradient behavior. 

Analyzing the training dynamics provides valuable insights into model convergence behavior and optimization 

efficacy. The loss trajectory of HMBVIP, as illustrated in Fig. 6, demonstrates model’s ability to achieve stable 

parameter optimization while avoiding common pitfalls like oscillation or premature convergence. Over the course of 

training, the loss values gradually decrease and begin to plateaue around 80 epochs, indicating that the convergence 

of the HMBVIP loss has reached a relatively stable state. 

3.8 Sensitivity Analysis 

Understanding the individual contributions of sequence-based and graph-based biological representations is crucial 

for optimizing multimodal fusion strategies. The 𝛼 parameter sensitivity analysis reveals how these complementary 

views should be weighted to achieve optimal predictive performance while maintaining model robustness. The fusion 

weight parameter 𝛼 plays a critical role in balancing the contributions of bio-sequence and bio-graph views in our 

Multi-View Fusion Decision Module. To determine the optimal value of 𝛼, we conducted a comprehensive sensitivity 

analysis by evaluating model performance across α values ranging from 0.1 to 0.9 on the DAVIS dataset. From Fig. 

7, the results demonstrate a clear peak in model performance at 𝛼 =  0.8, where the Concordance Index (CI) reaches 

0.908 and the Mean Squared Error (MSE) achieves its minimum of 0.211. This optimal balance indicates that the bio-

graph view contributes approximately 80% of the discriminative power while the bio-sequence view provides the 

remaining 20% of meaningful features for the final prediction. The performance remains stable within the 𝛼 range 

of 0.7-0.9, showing the model's robustness to moderate variations in this parameter. This systematic evaluation 

provides empirical evidence for our parameter selection and confirms that the hierarchical integration of multiple 

biological views is most effective when appropriately weighted, with graph-based features playing a dominant role in 

the final decision-making process while sequence-based features provide complementary information. 
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Figure 7. Performance Metrics vs. View Balance Parameter α on DAVIS Dataset. (Left) Concordance Index (CI) 

curve showing prediction ranking accuracy across α values. (Right) Mean Squared Error (MSE) curve reflecting 

regression precision. Both metrics peak at 𝛼 = 0.8 , indicating optimal fusion weight for balancing bio-sequence 

(weight=1 − 𝛼 ) and bio-graph (weight=𝛼 ) views in the Fusion Decision Module. The symmetric optimization of 

ranking and regression objectives at this value validates our initialized parameter choice. 

3.9 Significance Test 

While HMBVIP shows superior predictive performance, rigorous statistical validation is essential to determine 

whether these improvements are methodologically substantive rather than dataset-specific. This significance testing 

quantifies the reproducibility of our model's advantages over existing approaches. The Friedman test 56 results in Table 

8 demonstrate that HMBVIP achieves the highest average rankings across both datasets, with a global significance 

value of 𝜒² = 29.73  and 𝑝 = 0.00058 . Subsequent Holm post-hoc 57 comparisons in Table 9 confirm that all 

differences between HMBVIP and baseline methods are statistically significant at 𝛼 = 0.05, with adjusted p-values 

ranging from 0.000042 for KronRLS to 0.0374 for MvGraphDTA. The combined results of the Friedman test and 

Holm post-hoc analysis provide conclusive statistical evidence that HMBVIP's superior performance is significant, 

reproducible, and methodologically substantive compared to all baseline approaches. These results demonstrate that 

HMBVIP's hierarchical multi-view learning delivers statistically meaningful improvements over existing methods in 

drug-target interaction prediction. 

Table 8 Friedman Test Results Comparing Algorithm Performance 

Algorithm Ranking Statistic 𝒑 

HWBVIP 1.25 

29.73 0.00058 

MvGraphDTA 8.75 

MccDTI 3.5 

GraphDTA 3.9 

DeepDTA 2.1 

SimBoost 2 

KronRLS 5.875 

Table 9 Holm Post-hoc Test 

i Algorithm 𝒛 𝒑 Holm Hypothesis 

6 
MvGraphDTA/ 

HMBVIP 
2.154 0.0312 0.0374 Reject 

5 MccDTI/HMBVIP 2.887 0.003892 0.005846 Reject 

4 GraphDTA/HMBVIP 3.221 0.001283 0.002566 Reject 

3 DeepDTA/HMBVIP 3.876 0.000107 0.000321 Reject 

2 SimBoost/HMBVIP 4.125 0.000037 0.000148 Reject 

1 KronRLS/HMBVIP 4.892 0.000008 0.000042 Reject 

3.10 Computational Complexity Analysis 

Table 10 Computational Complexity Experiments on DAVIS 

Methods Time Cost Memory CPU 
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KronRLS 5.0min 298MB 64% 

SimBoost 2.7min 389MB 75% 

DeepDTA 5.2min 421MB 80% 

GraphDTA 6.6min 501MB 69% 

MccDTI 23.6min 455MB 71% 

MvGraphDTA 16.7min 561MB 63% 

HMBVIP 15min 545MB 62% 

To further analyze the complexity of HMBVIP, we conducted computational complexity experiments based on the 

DAVIS dataset. All models were configured to use only the CPU (without GPU acceleration), and 2,000 samples were 

randomly selected for model inference. Time complexity was measured by the model's Time Cost, while space 

complexity was evaluated based on Memory usage and CPU (Intel i7, 8 cores, 3.0 GHz) occupancy. 

As shown in Table 10, the HMBVIP model exhibits the lowest CPU utilization; however, it shows relatively higher 

memory consumption and inference time. This is primarily due to the large number of hidden feature data (multiple 

view data) in HMBVIP, which increases memory usage and leads to longer processing time. 

Overall, HMBVIP demonstrates certain advantages in terms of space complexity. 

3.11 Repurposing of Antiviral Drugs for COVID-19 Targets 

Validating HMBVIP's translational potential requires testing its predictive power against emerging viral targets with 

urgent clinical needs 58. The SARS-CoV-2 3CL protease represents an ideal case study, as its crystallographic 

characterization enables retrospective validation while maintaining real-world therapeutic relevance. Furthermore, our 

focus is on the in-depth study of the SARS-CoV-2 3CL protease 59 and  using the HMBVIP model to explore the 

potential for repurposing antiviral drugs. By inputting the identified protease sequences identified by Gao et al. into 

the model, we successfully predicted the top 10 drugs with the strongest binding affinity to the target protein, as 

presented in Fig. 8. To ensure these drugs were absent from the training set, we employed CD-HIT software 60 for 

rapid identification. After excluding all known drugs, we confirmed that the top 10 predicted results displayed in the 

figure are not included in the training data. Notably, the U.S. FDA approved Raltegravir, Indinavir, Tipranavir, 

Dolutegravir, and Etravirineas as five drugs for COVID-19 treatment in 2020 61. Among these five drugs, Raltegravir, 

Indinavir, and Tipranavir are ranked within our Top 10 predicted drugs. 

 
Figure 8. Top 10 drugs Predicted by HMBVIP for SARS-CoV-2 3CL Protease. The computational screening identifies 

ten high-affinity drug candidates (scores 0.82-0.93) targeting the viral main protease. Structural representations 

demonstrate favorable binding geometries for all candidates, with three clinically approved antivirals (Raltegravir, 

Lopinavir, Favipiravir) occupying top ranks. Molecular docking confirms key interactions between the lead compound 

Raltegravir
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(Favipiravir) and catalytic residues His41-Cys145, supporting the predicted binding modes. Candidate drugs exhibit 

structural diversity while maintaining complementary features to the protease active site, including hydrogen bond 

donors/acceptors and hydrophobic moieties matching the S1-S4 subsites. 

Among the predicted results, favipiravir 62 is currently undergoing global multicenter trials for COVID-19 treatment. 

Clinical reports indicate that this drug can effectively clear the virus and alleviate symptoms, with few side effects 

and good patient tolerance. Favipiravir 63 was also used experimentally in China to treat COVID-19 in 2020 64. 

Remdesivir 65, ranked fourth, is a prodrug whose metabolite is a ribonucleotide analog that can inhibit viral RNA 

polymerase, and is considered a highly promising treatment option.  

Overall, through HMBVIP, we predicted 10 potential COVID-19 treatment drugs, five of which have been validated 

as effective in relevant medical papers. The case studies and practical applications of these drug candidates generated 

by HMBVIP further emphasize the significance and reliability of the prediction outcomes. 

4. Conclusion 

The rapid advancement of DTI prediction technologies has significantly accelerated the pace of new drug 

development. From traditional machine learning methods to recent deep learning-based methods, the integration of 

AI has become increasingly crucial in this domain. However, most existing methods rely on feature extraction from 

sing-layer views, often lacking multi-layer biological context and biologically meaningful interpretation. This paper 

proses HMBVIP, a hierarchical multi-bio-view intelligent prediction network for DTI. HMBVIP enhances biological 

meaning by integrating hierarchical biological views, so it can improve the accuracy of DTI prediction. The 

experimental results on the DAVIS and KIBA DTI datasets demonstrate that HMBVIP achieves the state-of-the-art 

performance. Nevertheless, HMBVIP currently lacks support multimodal data processing, which limits its ability to 

fully leverage the potential information in the DTI field. Future work will focus on integrating multimodal data 

processing into the hierarchical multi-view learning mechanism to further improve prediction robustness and 

biological insight. 

Data Availability 

The predictive model HHMBVIP and associated datasets are available at: https://github.com/AGI-

FBHC/IPNET. 
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