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Abstract 
Motivation: Drug–target interaction (DTI) prediction refers to the prediction of whether a given drug molecule will bind to a specific target and 
thus exert a targeted therapeutic effect. Although intelligent computational approaches for drug target prediction have received much attention 
and made many advances, they are still a challenging task that requires further research. The main challenges are manifested as follows: 
(i) most graph neural network-based methods only consider the information of the first-order neighboring nodes (drug and target) in the graph, 
without learning deeper and richer structural features from the higher-order neighboring nodes. (ii) Existing methods do not consider both the 
sequence and structural features of drugs and targets, and each method is independent of each other, and cannot combine the advantages of 
sequence and structural features to improve the interactive learning effect.
Results: To address the above challenges, a Multi-view Integrated learning Network that integrates Deep learning and Graph Learning (MINDG) 
is proposed in this study, which consists of the following parts: (i) a mixed deep network is used to extract sequence features of drugs and tar
gets, (ii) a higher-order graph attention convolutional network is proposed to better extract and capture structural features, and (iii) a multi-view 
adaptive integrated decision module is used to improve and complement the initial prediction results of the above two networks to enhance the 
prediction performance. We evaluate MINDG on two dataset and show it improved DTI prediction performance compared to state-of-the- 
art baselines.
Availability and implementation: https://github.com/jnuaipr/MINDG.

1 Introduction
Drug–target interaction refers to the binding of a drug to a spe
cific location of target, resulting in a change in its behavior or 
function (Sachdev and Gupta 2019). A drug is chemical com
pounds which cause physiological changes in the body when con
sumed, injected or absorbed. A target, also known as a biological 
target, is a structure located in an organism that is recognized or 
bound by other substances such as ligands or drugs and can be 
acted upon by a drug or other targeted molecules (Overington 
et al. 2006). Common targets include nuclear receptors, G 
protein-coupled receptors, nucleic acids, enzymes, and ion chan
nels (Landry and Gies 2008). The aim of drug–target interaction 
prediction is to identify novel drug compounds for biological 
targets and determine the therapeutic effects of drugs, which can 
reduce the need for complex wet experiments.

There are currently four main categories of drug–target inter
action prediction methods: similarity-based methods, machine 
learning methods, deep learning methods, and graph 
learning methods.

Similarity-based methods, such as DTi2Vec (Thafar et al. 
2021) proposed by Thafar, use Node2vec (Chen et al. 2020) 
to predict drug–target interactions. DTi2Vec maps drugs and 
targets to a low-dimensional vector space, preserving the sim
ilarity between nodes. These vectors can be used to predict 
drug–target interactions. The DTi2Vec method predicts links 
between drugs and proteins without mining additional inter
nal information of drugs and proteins. Machine learning 
methods utilize protein structure and sequence information 
to predict targets. For instance, Nagamine et al. proposed a 
method that uses chemical structures, mass spectra of drugs, 
and amino acid sequences to represent proteins for predicting 
drug–target interactions (Nagamine and Sakakibara 2007). 
Deep learning methods combine features, models, and bioin
formatics networks with other methods to achieve better pre
diction results. Drug–target interaction prediction involves 
binary classification. In contrast, drug–target binding affinity 
(DTA) prediction involves predicting the degree of interac
tion between drugs and targets as a continuous value. 
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DTA methods provide detailed information on the interac
tion between drugs and targets. €Ozt€urk et al. proposed 
DeepDTA ( €Ozt€urk et al. 2018), which extracts molecular fea
tures of drugs and targets separately using convolutional neu
ral networks (Yang et al. 2019). Then, deep neural networks 
are used to predict drug–target interactions. Lee et al. pro
posed DeepConv-DTI, a deep learning method for drug–tar
get identification (Lee et al. 2019). It uses deep belief 
networks (DBN) as a pre-processing network to pre-process 
drug and target features. While DeepConv-DTI is capable of 
obtaining local, detailed features of drugs and targets, it lacks 
robustness across different domains. In real-world scenarios, 
test and training data often come from different domains 
with varying distributions. To address this challenge, Abbasi 
et al. proposed the DeepCDA method (Abbasi et al. 2020), 
which is based on LSTM and CNN. Despite its good perfor
mance, DeepCDA is not effective in handling multimodal 
data. Dehghan et al. proposed TripletMultiDTI (Dehghan 
et al. 2023) to fuse multimodal knowledge for predicting in
teraction labels and optimizing the learning of different spa
tial features through the triplet loss function.

Currently, among the available methods for predicting 
drug–target interactions, the Graph Convolutional Network 
(GCN) based method shows the most promise. DTIGCCN 
(Shao et al. 2020) extracts features from the structural infor
mation of the drug and target using GCN, and then uses 
CNN to extract features from the sequence information of 
the drug and target. Wang et al. proposed a method for pre
dicting drug–target interactions using the graph attention net
work (GAT) (Veli�ckovi�c et al. 2018, Wang et al. 2021) based 
on GCN. They conducted experiments on the Drugbank 
dataset (Wishart et al. 2018).

Intelligent computational approaches for drug–target pre
diction have received much attention and made significant 
advances (Niculescu-Mizil and Caruana, 2005) (Brier, 
1950). However, it remains a challenging task, as mentioned 
in the motivation. To address the challenge, this study pro
poses a Multi-view Integrated Learning Network (MINDG) 
that integrates Deep Learning and Graph Learning. The 
method's main principles and processes are as follows: The 
initial step involves processing drug–target pairs into se
quence view data and structure view data. Sequence view fea
tures are then constructed using a hybrid deep network, 
while structure view features are constructed using a higher- 
order graph attention network. Finally, the multi-view fea
tures are utilized to make predictions, and the initial predic
tion results of each view are outputted. Finally, the initial 
prediction results of each view are imported into a multi-view 
adaptive weighted integrated decision mechanism for the fi
nal prediction. MINDG combines graph learning and deep 
learning to extract intrinsic structural information of drugs 
and proteins, as well as extrinsic relationship information be
tween them. Therefore, our MINDG improves the perfor
mance of model prediction compared to the previous 
methods. However, MINDG only learns the intrinsic struc
tural information of drugs and proteins in a sequential man
ner, and does not fully utilize all the intrinsic structural 
information available. In the future, graph learning methods 
may be used to learn the intrinsic structures of drugs and pro
teins. In addition, we have not yet conducted the wet experi
ment stage due to limited research. We plan to conduct 
further wet experiments, including drug panel test, in the fu
ture. Future research will address another issue of training 

drugs and targets appearing in the validation and test sets, 
which is a limitation of the dataset splitting.

Our contributions consist of three main aspects: (i) design 
an attention mechanism for the drug and protein target graph 
learning and propose high-order graph attention convolu
tional network (HOAGCN), (ii) fuse the MPNN and CNN 
methods to enhance the structural feature learning for drug 
and protein target sequences, and (iii) propose multi-view in
tegrated learning network that integrates deep learning and 
graph learning (MINDG).

The rest of this study is organized as follows: Section 2 
describes the specific details and principles of the proposed 
method in this study. Section 3 conducts an experimental 
study of the proposed network model, including comparisons 
with other methods and ablation experiments, and the exper
imental results are analyzed and applied. Section 4 summa
rizes this study and points out the shortcomings and 
improvement directions.

2 Materials and methods
The structure of the integrated learning network model pro
posed in this study is shown in Fig. 1. The model comprises 
three main modules: (i) Initial View Data Construction 
Module, (ii) Interaction Prediction Module, and (iii) Multi- 
View Adaptive Integrated Decision Module (MAIDM). These 
modules are briefly described in the supplementary.

2.1 Initial view data construction module
2.1.1 DTI datasets
Our study evaluated the interaction prediction performance 
of MINDG using two open-source datasets: BindingDB (Liu 
et al. 2007) and DAVIS (Davis et al. 2011). BindingDB is a 
public, web-accessible database of measured binding affini
ties, focusing chiefly on the interactions of proteins consid
ered to be candidate drug–targets with ligands that are small, 
drug-like molecules. DAVIS contains the interaction of 72 ki
nase inhibitors with 442 kinases, covering over 80% of the 
human catalytic protein kinome. Table 1 shows some infor
mation of the two datasets. We split the two datasets in a 
7:1:2 ratio. The method of balancing samples is undersam
pling. Specific details of splitting are in Section 2.1 of the sup
plementary material.

2.1.2 DTI sequence view data
The binding affinity of a drug to its targets can be used to 
measure drug–target interactions. This affinity reflects the 
potency and selectivity of the drug, and is determined by the 
mutual attraction between the drug molecule and its target 
proteins. In our study, drug sequences are represented using a 
simplified molecular input line entry system (SMILES). 
Amino acid sequences are used to represent target proteins, 
and the labels between drugs and targets are binary values 
obtained by binarizing binding affinity value.

2.1.3 DTI structure view data
For X drugs and Y target proteins contained in different 
datasets, the label between them is usually 0 or 1, or the binding 
affinity value. When the label is a binding affinity value, the 
following linkage relationship between the drug set D ¼
fd1; d2; . . . ;dXg and the target protein set P ¼ fp1;p2; . . . ;pYg

can be derived after threshold processing: 
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I dx;py
� �

¼
0; I > threshlod
1; I < threshold

�

(1) 

2.2 Interaction prediction module
2.2.1 Hybrid deep network interaction prediction  
Sub-module based on sequence data
For the sequence view, a hybrid deep network (HDN) as 
shown in Fig. 2 was constructed to learn the interactions be
tween drugs and targets. The HDN is composed of two parts: 
the encoder and the prediction module. The encoder is made 
up of a Message Passing Neural Network (MPNN) (Gilmer 
et al. 2017, Shin et al. 2019) and a CNN (Albawi et al. 2017, 
Gu et al. 2018, Wu et al. 2019), which encode the drug se
quence and the target protein sequence, respectively, to learn 
the interactions between drugs and targets. The drug and tar
get's encoded features are concatenated and inputted into a 
prediction module that consists of fully connected layers to 
predict the connection probability of drug targets.

2.2.1.1 Encoders for hybrid deep networks
(1) Message passing neural network for drug sequence coding

In this study, the MPNN was used to encode the drug, 
with atoms as nodes and chemical bonds as edges. The initial 
node features, as per Yang's method (Yang et al. 2019), were 
set to include atom type, formal charge, chirality, hybridiza
tion, aromaticity, and atomic mass. All features were encoded 
using One-Hot (Seger 2018), except for atomic mass which 
was represented by a real number. The edges' initial features 
include bond type, conjugation, cyclic nature, and steric 
effects. These features are also encoded using One-Hot. To 
facilitate the description of the message passing neural net
work, we illustrate it with an undirected graph G. Where i 
and j are atomic nodes in G, x0

i and x0
j are the initial features 

of the nodes, and e0
ij is the initial edge feature between nodes i 

and j.
The MPNN algorithm consists of two phases: message pass

ing and readout. During the message passing phase, information 
is exchanged between atoms and node and edge features are 

Figure 1. The general structure of the MINDG model proposed in this study.

Table 1. A brief description of the datasets used in this study.

Dataset Nodes DTI pairs

Drugs Targets Positive rate (%) Training (70%) Validation (10%) Test (20%) Total

Binding-DB 10 665 1413 17.01±0.01 36 599 5228 10 457 52 284
DAVIS 68 379 6.97±0.03 18 040 2577 5154 25 772

Figure 2. Structure diagram of the hybrid deep network (HDN).
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constructed using the hidden states of nodes and edges. The 
readout phase utilizes these features for prediction.

The message passing phase consists of T steps, 
t 2 f1; . . . ; Tg. Before performing the first message delivery, 
Equation (2) is first used to initialize the edge hiding state h0

ij be
tween nodes i and j: 

h0
ij ¼ s Wicat x0

i ; e
0
ij

� �� �
(2) 

where Wi 2 Rh�h is a weight matrix, cat x0
i ; e

0
ij

� �
denotes the 

concatenation of feature x0
i and edge feature e0

ij of node i, and 
s is the ReLU activation function.

On each step t, the message function Mt and the update 
function Ut are used to update the message mt

ij received by 
each edge and the edge hidden state ht

ij. 

mtþ1
ij ¼

X

j2N ið Þ

Mt xt
i ;x

t
j ;h

t
ij

� �

(3) 

htþ1
ij ¼ Ut ht

ij;m
tþ1
ij

� �
(4) 

In Equation (3), mtþ1
ij is the information received by node i at 

step t þ 1, and N ið Þ is the set of neighboring nodes of node i. 
This equation indicates that the information received by the 
edges between nodes i and j comes from the feature xt

i of 
node i, the feature xt

j of neighboring nodes and the hidden 
state ht

ij of the edges between them. After the information is 
generated, it is necessary to update the hidden state of the 
edges. In Equation (4), Ut is the update function, which takes 
the hidden state ht

ij of the edges at step t and the received mes

sage mtþ1
ij as input to obtain the edge-hidden state htþ1

ij at 
step tþ 1.

In particular, the message function Mt and the update 
function Ut are defined in the form of Equations (5) and (6): 

Mt xt
i ;x

t
j ;h

t
ij

� �
¼ htþ1

ij (5) 

Ut ht
ij;m

tþ1
ij

� �
¼ s h0

ij þWimtþ1
ij

� �
(6) 

After calculating the edge hidden state ht
ij, it is then summed 

up using Equation (7) and further calculated using Equation 
(8) to obtain the hidden state hi of node i: 

mi ¼
X

j2N ið Þ

ht
ij (7) 

hi ¼ s Wicat xi;mið Þ
� �

(8) 

In the readout phase, the hidden states of all nodes are 
summed to obtain the encoded features of the MPNN and 
are represented in Equation (9). 

h ¼
X

i2G

hi (9) 

Where in Equation (7), h is the drug encoding feature Ed of 
the MPNN output.

(2) Convolutional neural networks for target coding
This study employs a Convolutional Neural Network 

(CNN) as an encoder to encode the target protein sequences. 
The CNN architecture includes one or more convolutional 
and pooling layers. The pooling layer down-samples the out
put of the previous layer and generalizes the features learned 
by the filters. Supplementary Figure S2 in the supplementary 
materials illustrates the specific architecture of the CNN used 
in this study.

The study followed the method (Hinton et al. 2006) to 
scan 550 000 protein sequences from UniProt. Twenty clas
ses, represented by unique letters, were extracted and each 
class was assigned a corresponding integer. For instance, ‘C’ 
was assigned 2, ‘N’ was assigned 12, ‘V’ was assigned 18, ‘S’ 
was assigned 16, and ‘F’ was assigned 5. The sequence ‘C N 
V��� S’ was encoded as [C N V ��� S] ¼ [2 12 18 ��� 16]. The 
protein sequence is inputted into a 3-layer convolutional 
layer for convolutional operation, where the number of filters 
in the second layer is twice of the first layer, and the number 
of filters in the third layer is three times of the first layer. In 
this study, the number of filters is set to 32, 64, and 96, re
spectively. The encoded features Ep and Ed generated by the 
message passing neural network in the previous sections 
are concatenated and passed to the prediction unit for 
final prediction.

2.2.1.2 Prediction unit for hybrid deep network
The prediction units of the hybrid network are three fully 
connected layers that receive as input the drug encoding re
sult Ed and the target encoding result Ep generated by the en
coder. The size of the first two FC layers is set to 1024 and 
each layer is followed by a Dropout of size 0.1. The dropout 
is a regularization technique that avoids overfitting by setting 
certain neurons to 0. The size of the third layer is 512, and fi
nally the prediction results are obtained by the ReLU activa
tion function. The prediction unit is shown in Supplementary 
Figure S3 in the Supplementary Materials.

2.2.2 High-order graph attention convolutional network 
interaction prediction module based on structure data
For the drug–target relationship graph view data, a high- 
order graph attention convolutional network was designed to 
extract the structure features of drugs and targets, and the 
network structure is shown in Fig. 3. For the constructed 
drug–target structure data, the attention coefficients are 
assigned to the neighboring nodes by the graph attention 
mechanism to obtain the more important neighboring fea
tures, and then the neighboring features are aggregated by 
the high-order graph convolution layer to obtain the aggre
gated features of the nodes, and finally the drug–target inter
actions are predicted by the prediction unit.

The high-order graph attention network consists mainly of 
a graph attention network, an encoder and a prediction unit. 
Each module is described in the supplementary.

2.3 Multi-view adaptive integrated decision 
module (MAIDM)
The previous sections discussed the hybrid deep network pre
diction module and the high-order graph attention convolu
tional network prediction module. As different views contain 
varying information, their prediction results need to be fused. 
This study employs an adaptive weighting mechanism to fuse 
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the losses of multiple views and construct an optimization ob
jective function. The objective function also addresses the im
portance of each view. The loss function is described in 
Equation (10): 

loss ¼
XM

v¼1

av
rLv Zv; labelð Þ (10) 

s:t:
XM

v¼1

av ¼ 1; av > 0 

where M denotes the number of views (M ¼ 2 in this study), 
Zv is the predicted drug–target interaction of the v-th view, 
label is the true label of the drug–target pairs, and Lv is the 
cross entropy loss of the v-th view, and av is the fuzzy weight
ing coefficient of the v-th view, and r > 1 is a constant that 
serves as the weighted fuzzy index of the v-th view. By intro
ducing r, the weights of the views can be adaptively adjusted 
according to the loss of the views.

For Equation (10), when the model parameters are fixed, 
for the variable av to be optimized, the following Lagrangian 
function can be obtained according to the Lagrange multi
plier method: 

J a; kð Þ ¼ min
XM

v¼1

av
rLv þ k

XM

v¼1

av � 1

 !

(11) 

where k is the Lagrange multiplier, the derivative of Jða; kÞ
with respect to av and k is computed, and such that it is zero, 
resulting in the updated weight av shown in Equation (13): 

av ¼
L

1
1� r
v

PM
i L

1
1� r
i

(12) 

According to the above equations, the weights of each view can 
be adaptively adjusted during the network training process.

After obtaining the weights of each view, the weights of 
each view are multiplied by their respective outputs and then 
they are added together as the final prediction results R. This 
process can be represented by Equation (13): 

R ¼
XV

v¼1

av � predv (13) 

The prediction results obtained from the combined decision 
of the two views are expected to achieve the best prediction 
performance.

3 Results
To verify the validity of the proposed method in this study, 
experimental analyses were conducted in the following 
aspects: (i) performance comparison with current better per
forming drug–target interaction prediction methods; (ii) abla
tion experiments were conducted; and (iii) application studies 
of the prediction results were performed.

3.1 Experiment setting
3.1.1 Training setting
The MINDG's learning rate is 5e−4, with batch size of 32, 
and training epoch of f10, 20g. All modules of MINDG are 
trained together, and only the trainable parameters are saved 

Figure 3. Structure of high-order graph attention convolutional network (HOAGCN).
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at the end of training. We provide detailed training parame
ters and model hyperparameters in Supplementary Tables S2 
and S4 of the Supplementary Material. Experimental results 
are verified using the 10-fold cross-validation method 
(Rodriguez et al. 2009) with each experiment repeating 15 
times to ensure that the results are statistically significant. A 
cryptographically secure pseudo-random number generator 
(CSPRNG) is used to generate 15 random seeds for 
each experiment.

3.1.2 Metrics
To assess the performance of the proposed method, this study 
used seven evaluation metrics: sensitivity (Sen.), specificity 
(Spec.), F1-Score, Precision, Accuracy, area under the ROC 
curve (AUROC), and area under the PRC curve (AUPRC). 
All metrics have a range of [0,1], and higher values indicate 
better performance. The specific formula and its representa
tion are shown in the supplementary materials.

3.2 Evaluation and comparison
This study compares our MINDG with three representative 
methods: two deep learning methods, DeepCDA (Abbasi 
et al. 2020), and TripletMultiDTI (Dehghan et al. 2023); and 
one graph neural network methods, GAT (Wang et al. 2021). 
The performance of prediction is compared using two data
sets, BindingDB and DAVIS. Tables 2 and 3 present the mean 
and variance of 15 experiment repetitions with different ran
dom seeds. The prediction indicates the strength of the drug's 
binding to the protein, with 1 indicating weak binding and 0 
indicating strong binding.

Binding a drug to a protein locally obstructs the protein's cat
alytic reaction with the virus. However, in reality, a drug can ef
fectively bind to multiple proteins, resulting in a complex 
graph-like relationship between multiple drugs and targets. 
Studying the structural and relationship features of drug–pro
tein pairs can provide expert knowledge to judge the effective
ness of unobserved pairs. The method based on both structural 
and relationship feature learning outperforms the method with 
only structural feature learning or only relational learning.

Tables 2 and 3 show the mean experimental results for all 
compared methods on the BindingDB and DAVIS datasets, re
spectively. The results are based on 10-fold cross-validation. 
Supplementary Tables S1 and S2 of the supplementary materials 
show the precise 10-fold cross-validation results of MINDG On 
BindingDB and DAVIS. Supplementary Tables S2 and S4 of the 
supplementary materials show the related model hyperpara
meters of MINDG on BindingDB and DAVIS.

Tables 2 and 3 show that the latest deep learning method 
(TripletMultiDTI) performs better than the graph learning 
method (GAT). Compared to GAT, TripletMultiDTI improves 
AUPRC and AUROC by 1.7% and 1.8% respectively on 
BindingDB dataset, and by 5% and 5.9% on the DAVIS data
set. Compared to the best performing models in the single 
method, TripletMultiDTI and GAT, MINDG improved 

AUPRC values by 3.1% and 4.8% respectively on BindingDB 
dataset, and by 2.9% and 2.9% on the DAVIS dataset. 
MINDG has only one metric, Spec, which is smaller than 
TripletMultiDTI. Despite the smaller number of samples due 
to undersampling in the DAVIS dataset, MINDG achieves an 
AUROC of 0.993 and an AUPRC of 0.992. MINDG combines 
the advantages of graph neural networks and deep learning 
methods, resulting in better performance than either method 
alone. MINDG utilizes graph neural networks to learn features 
of drug–protein relationships and deep learning methods to 
learn drug–protein features. The results indicate that the pro
posed prediction model, MINDG, performs better in predict
ing interactions. We used the Freidman Test method (Pereira 
et al. 2015) to test the significance of the results and the sensi
tivity of the binding affinity gate (He et al. 2017), detailed in 
Section 2.7 of the supplementary materials. We conducted a 
significance experiment of the results using the Freidman Test 
method (Pereira et al. 2015) and a sensitivity experiment of 
the binding affinity gates (He et al. 2017), detailed in Section 
2.7 of the supplementary materials.

3.3 Ablation analysis
3.3.1 The impact of multi-view learning on prediction 
performance
To evaluate the effectiveness of the multi-view learning mech
anism, we divided the two views and MAIDM included in the 
method proposed in this study, and then conducted compara
tive experiments to determine the effectiveness of each view 
for multi-view learning. Specifically, let View1 denote the hy
brid deep network prediction model based on the combined 
affinity view, View2 denote the high-order graph attention 
network prediction model based on the drug–target relation
ship graph view. -View1/2 refers to masking the effect of the 
result of View1/2 on the final result of the model. -MAIDM 
means that the Multi-View Adaptive Integrated Decision 
Module is not used to fuse View1 and View2, and the arith
metic mean of the view results is used as the final result out
put. MINDG is then compared with the three particular 
versions listed above. The experimental results are presented 
in Tables 4 and 5. As can be seen from the results, MINDG 
has improved metrics on all datasets compared to View1, 
View2, and MAIDM. The predictive ability of the corre
sponding model is weaker than the predictive performance 
based on the synergy of the two views, regardless of which in
dividual view is used. This also indicates that multiple views 
have complementary roles, and through their synergy, the 
deep features of different views learned by the high-order 
graph attention network and the hybrid deep network can be 
more fully exploited, thus improving the performance of the 
overall model.

3.3.2 The impact of multi-view adaptive integrated decision 
module on prediction performance
This section verifies the effectiveness of the multi-view adap
tive integrated decision module used by MINDG. To evaluate 

Table 2. Performance comparison of different methods on BindingDB dataset by 10-fold cross validation.

Method AUPRC AUROC F1-score Sen. Spec. Precision Accuracy

DeepCDA 0.901 ± 0.012 0.894 ± 0.003 0.811 ± 0.005 0.872 ± 0.013 0.840 ± 0.004 0.760 ± 0.016 0.831 ± 0.011
TripletMulti-DTI 0.940 ± 0.003 0.931 ± 0.001 0.840 ± 0.002 0.917 ± 0.022 0.863 ± 0.001 0.792 ± 0.008 0.865 ± 0.005
GAT 0.923 ± 0.002 0.913 ± 0.001 0.755 ± 0.021 0.887 ± 0.001 0.851 ± 0.001 0.701 ± 0.013 0.775 ± 0.012
MINDG 0.971 ± 0.008 0.951 ± 0.004 0.857 ± 0.013 0.923 ± 0.006 0.842 ± 0.015 0.800 ± 0.013 0.875 ± 0.007

The bold value is the best performance of the methods in the same column.
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its performance, we compare MINDG with the correspond
ing version that directly uses the simple arithmetic average 
of multi-view results related to Equation (14), defined 
as MINDG_avg. The experimental results are shown in the 
supplementary material (Supplementary Fig. S6). 

MINDG avg ¼
1
V

XV

v¼1

Rv (14) 

3.4 Repurposing of antiviral drugs for  
COVID-19 targets
In addition, based on the target SARS-CoV-2 3CL protease 
of the COVID-19, we used MINDG for the exploration of 
antiviral drug repurposing. Using the SARS-CoV-2 3CL pro
tease sequence resolved by Gao et al. (2020) input into the 
model, the top 10 drugs with binding affinity values were 
predicted as shown in Table 6. To guarantee that the top 10 
drugs are not included in the training set, we utilize CD-HIT 
(Fu et al. 2012) software to quickly identify their presence. If 
they are detected, the drugs are excluded from the training 
set. Therefore, we confirm that the top 10 drugs listed in  
Table 6 are not part of the training set.

Among the predicted results in Table 5, fapiravir (Seneviratne 
et al. 2020) is currently undergoing a global multicenter clinical 
trial for the treatment of coronavirus. Published clinical data 
suggest that the drug can rapidly clear the virus and achieve re
lief of COVID-19 symptoms, accompanied by fewer adverse 
effects and higher tolerability. In February 2020, favipiravir was 
used in China for the experimental treatment of COVID-19 (Li 
and De Clercq 2020). The fourth ranked drug, remdesivir 
(Nhean et al. 2021), is a prodrug (Han and Amidon 2000, 
Albuquerque Silva et al. 2005) biotransformed into a ribonucle
otide analogue inhibitor capable of inhibiting the viral RNA 

polymerase. Therefore, remdesivir is considered a highly prom
ising clinical agent for the treatment of COVID-19. On 22 
October 2020, the US Food and Drug Administration approved 
raltegravir as the first drug for the treatment of COVID-19.

The above case studies and practical applications of drug 
efficacy in MINDG-generated candidate drug lists help dem
onstrate the informative value of MINDG prediction results.

4 Conclusion
This study proposes an integrated learning model called 
MINDG, which combines a high-order graph attentional 
deep network and a hybrid deep network. To effectively ana
lyze the performance of the proposed method, experiments 
were conducted using BindingDB and DAVIS datasets. 
Various comparisons were made between the proposed 
method and some state-of-the-art methods, and the results 
showed that the proposed method achieved better perfor
mance. In addition, to validate the effectiveness of this study's 
approach, we verified the results predicted by it using data 
from DrugBank. We also analyzed and applied the newly 

Table 3. Performance comparison of different methods on DAVIS dataset by 10-fold cross validation.

Method AUPRC AUROC F1-score Sen. Spec. Precision Accuracy

DeepCDA 0.909 ± 0.006 0.900 ± 0.007 0.821 ± 0.009 0.780 ± 0.008 0.913 ± 0.007 0.760 ± 0.016 0.831 ± 0.011
TripletMulti-DTI 0.964 ± 0.001 0.963 ± 0.003 0.863 ± 0.002 0.790 ± 0.001 0.945 ± 0.002 0.792 ± 0.008 0.865 ± 0.005
GAT 0.914 ± 0.001 0.904 ± 0.003 0.755 ± 0.004 0.784 ± 0.002 0.923 ± 0.002 0.701 ± 0.013 0.775 ± 0.012
MINDG 0.993 ± 0.001 0.992 ± 0.001 0.896 ± 0.011 0.812 ± 0.005 0.998 ± 0.001 0.800 ± 0.013 0.875 ± 0.007

The bold value is the best performance of the methods in the same column.

Table 4. Performance comparison of different MINDG views on the BindingDB dataset.

Method AUPRC AUROC F1-score Sen. Spec. Precision Accuracy

MINDG 0.971 ± 0.008 0.951 ± 0.004 0.857 ± 0.013 0.923 ± 0.006 0.842 ± 0.015 0.800 ± 0.013 0.875 ± 0.007
−MAIDM 0.940 ± 0.007 0.932 ± 0.002 0.823 ± 0.011 0.905 ± 0.010 0.855 ± 0.001 0.786 ± 0.007 0.860 ± 0.001
−View1 0.942 ± 0.003 0.929 ± 0.002 0.844 ± 0.000 0.894 ± 0.001 0.822 ± 0.001 0.792 ± 0.013 0.869 ± 0.001
−View2 0.939 ± 0.012 0.934 ± 0.002 0.802 ± 0.021 0.913 ± 0.018 0.889 ± 0.001 0.781 ± 0.001 0.852 ± 0.002

The bold value is the best performance of the ablation methods in the same column.

Table 5. Performance comparison of different MINDG views on the DAVIS dataset.

Method AUPRC AUROC F1-score Sen. Spec. Precision Accuracy

MINDG 0.993 ± 0.001 0.992 ± 0.001 0.896 ± 0.011 0.812 ± 0.005 0.998 ± 0.001 0.998 ± 0.001 0.906 ± 0.011
−MAIDM 0.968 ± 0.002 0.978 ± 0.011 0.858 ± 0.009 0.808 ± 0.003 0.965 ± 0.010 0.970 ± 0.004 0.883 ± 0.003
−View1 0.973 ± 0.003 0.986 ± 0.018 0.875 ± 0.017 0.810 ± 0.004 0.971 ± 0.019 0.982 ± 0.002 0.891 ± 0.001
−View2 0.964 ± 0.002 0.971 ± 0.001 0.842 ± 0.001 0.807 ± 0.003 0.960 ± 0.001 0.959 ± 0.005 0.875 ± 0.005

The bold value is the best performance of the ablation methods in the same column.

Table 6. Drug repurposing of SARS-CoV2 3CL protease.

Rank Drug Binding affinity

1 Foscarnet 16.365
2 Favipiravir 14.489
3 Arbidol 13.241
4 Remdesivir 13.102
5 Rimantadine 10.039
6 Rilpivirine 8.432
7 Sofosbuvir 6.891
8 Glecaprevir 6.230
9 Rimantadine 4.459
10 Amantadine 3.187
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identified drug–target interactions for MINDG to explore the 
potential of coronavirus-targeted therapy.

Supplementary data
Supplementary data are available at Bioinformatics online.
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