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Abstract—Generative Models (GMs), particularly Large 

Language Models (LLMs), have garnered significant attention in 

machine learning and artificial intelligence for their ability to 

generate new data by learning the statistical properties of 

training data and creating data that resemble the original data. 

This capability offers a wide range of applications across various 

domains. However, the complex structures and numerous model 

parameters of GMs obscure the input-output processes and 

complicate the understanding and control of the outputs. 

Moreover, the purely data-driven learning mechanism limits 

GMs’ abilities to acquire broader knowledge. There remains 

substantial potential for enhancing the robustness and 

generalization capabilities of GMs. In this work, we leverage 

fuzzy system, a classical modeling method, to combine both data-

driven and knowledge-driven mechanisms for generative tasks. 

We propose a novel Generative Fuzzy System framework, named 

GenFS, which integrates the deep learning capabilities of GMs 

with the term-based interpretability and dual-driven mechanisms 

of fuzzy systems. Specifically, we propose an end-to-end GenFS-

based model for sequence generation, called FuzzyS2S. A series 

of test studies were conducted on 12 datasets, covering three 

distinct categories of generative tasks: machine translation, code 

generation, and summary generation. The results demonstrate 

that FuzzyS2S outperforms the Transformer in terms of 

accuracy and fluency. Furthermore, it exhibits better 

performance than state-of-the-art models T5 and CodeT5 for 

some application scenarios. 

 
Index Terms—Generative Model; Generative Fuzzy System; 

Sequence-to-Sequence; Transformer; Tokenizer 

 

I. INTRODUCTION 

n recent years, generative models have garnered 

widespread attention for addressing complex generative 

tasks. Particularly, continuous development of 

Transformer and its derivative technologies has led to state-of-

the-art large natural language processing  models (LLMs), 
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such as ChatGPT and Llama [1], [2], [3]. These models can 

explore hidden patterns and relationships within data and 

generate high-quality multimodal data such as text, audio, and 

image, making them powerful tools in Natural Language 

Processing (NLP) and artificial intelligence. 

Transformer [4] and their derivatives form the basis of 

many generative AI techniques [5]. Representative models 

include GPT [6], [7], [8] for text generation, CLIP [9], [10] for 

image generation, and MuLan [11] for audio generation. 

Despite the complexity and variety of generative tasks, they 

can be transformed into sequence generative tasks through 

serialization techniques [12]. For example, text is sliced into 

token sequence, images are divided into patches, and audio 

data are discretized into time series of amplitudes. The models 

generate predicted sequences by learning the relationships 

between the input and target sequences [13]. These sequences 

are then deserialized to obtain the final results. Sequence 

generative tasks have several key characteristics, including 

variable-length unstructured data, ordered elements of 

sequence, and complex mapping relationship between input 

and target sequences. 

Existing generative models have complex network 

structures, deep hierarchies, and a large number of parameters, 

which obscure the internal workings and decision-making 

processes and make output control difficult [14]. Also, these 

models often require vast datasets for training and operate as 

black boxes, and it is hard to incorporate logical knowledge, 

rules and constraints. This data-driven approach limits the 

models’ ability to generalize and handle a wider range of 

applications. Generative models also demand significant 

computational time and resources for training. Moreover, it is 

challenging to reuse the parameters of the trained model, 

leading to considerable consumption of waste of 

computational resources, which hinders large-scale application 

and technological development in the long run. 

Fuzzy system is a classical modeling method composed of 

fuzzy sets, fuzzy rules, and inference mechanisms. It handles 

fuzzy information effectively and provides good 

interpretability [15]. Also, fuzzy systems can express expert 

knowledge, address nonlinear problems, and offer better 

robustness and generalization capabilities. Notably, fuzzy 

systems can capture the fuzzy characteristics of human 

thinking from a macroscopic perspective, simulating human 

reasoning and decision-making to handle uncertainty problems 

that conventional mathematical methods struggle to solve. 

Fuzzy systems have been widely used for classification [16], 

[17], recognition [18], [19], detection [20], prediction and 

process modeling [21]. In fuzzy systems, fuzzy rules can 

represent priori expert knowledge, which can be easily 
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transferred from one system to another [22], [23]. This enables 

efficient knowledge migration and reuse, greatly saving 

computational resources. 

Fuzzy system uses a priori expert knowledge to divide the 

inputs into multiple sets with different feature terms for 

respective processing. Therefore, it is significant to develop 

generative models with fuzzy system. However, for complex 

generative tasks, such as machine translation, code generation, 

and summary generation in NLP, generative fuzzy systems 

still face the following challenges. Frist, the input of 

generative tasks consists of variable-length unstructured data 

[24], which cannot be directly processed by classical fuzzy 

systems. The complex token mapping relationships in 

generative tasks require models to be robust in handling high-

dimensional data [25]. However, classical fuzzy systems are 

shallow models with a small number of trainable parameters, 

which are inadequate for running generative tasks effectively. 

To address the first challenge, we develop generative fuzzy 

system by implementing a delegate election strategy for fuzzy 

sets and transforming the fuzzy membership calculation into 

similarity calculation between the inputs and the delegates. 

This approach enables fuzzification of both structured and 

unstructured data. Generative tasks are then performed by 

modeling the joint probability through learning the probability 

distribution of tokens across the sequences. The model needs 

to handle a large number of trainable parameters and has 

strong learnability. To address this challenge, we introduce 

deep generative models as the consequents of the fuzzy rules. 

This integration enhances the system's learning ability for 

sequence generation. 

Compared with popular generative modeling approaches 

[26], [27], [28], the proposed generative fuzzy system 

enhances model performance and generalization by 

embedding prior knowledge through fuzzy rules. It retains the 

core advantages of classical fuzzy systems – term-based 

interpretability and dual-driven mechanisms powered by both 

expert knowledge and data-driven learning [29]. The 

contributions of this paper are summarized as follows. First, 

we propose a novel generative fuzzy system framework, called 

GenFS, which combines the high interpretability of fuzzy 

system with the powerful learning capabilities of generative 

models. Moreover, GenFS can efficiently transfer generative 

knowledge from one system to another through generative 

fuzzy rules, thereby saving computational resources and 

reducing training time costs. 

Second, based on our proposed GenFS framework, we 

introduce a specific generative fuzzy system for natural 

language sequence generation, called FuzzyS2S. During the 

preprocessing stage, FuzzyS2S employs a novel multi-scale 

fuzzy tokenizer to optimize the token frequency distribution of 

the sequences and to extract sequence information at multiple 

scales. In addition, the model introduces an innovative fuzzy 

membership calculation method to effectively address the 

problem of variable-length sequence fuzzification. 

The remainder of the paper is structured as follows: Part II 

introduces the generative model along with the related 

concepts and principles of classical fuzzy systems. Part III 

presents the generative fuzzy system framework GenFS. Part 

IV presents the generative fuzzy system FuzzyS2S for 

sequence-to-sequence generative tasks. Part V evaluates the 

performance of the FuzzyS2S model on machine translation, 

summary generation, and code generation. Part VI gives the 

conclusion and an outlook for future work. 

II. RELATED WORKS 

A. Generative Models 

The advent of deep learning has led to significant 

advancements in generative modeling technology. In the field 

of NLP, sequence generation encompasses a range of 

sequence-to-sequence (seq2seq) [30] tasks such as machine 

translation, code generation, and summary generation. Early 

research primarily focuses on Recurrent Neural Networks 

(RNNs) and Long Short-Term Memory (LSTM) networks 

[31]. However, the memory performance of these early 

seq2seq models degrades rapidly as sequence length increases, 

and they struggle to effectively differentiate tokens with 

varying importance [30].  

To address these issues, Bahdanau et al. proposed the 

Attention Mechanism [32], which assigns different degrees of 

attention to tokens based on their importance by attentional 

scoring to alleviate the problem of long dependencies. 

Vaswani et al. proposed the Transformer model which utilizes 

a multi-head attention mechanism and effectively parallelizes 

training. BERT [33] is a model based on the Transformer 

architecture that employs bidirectional encoding 

representation, and is used as the encoder in the autoencoder 

framework [34]. To support a variety of downstream tasks, 

Raffel et al. proposed the T5 [35], a Transformer-based pre-

trained language model capable of performing tasks such as 

text classification, text generation, text summarization, and 

machine translation. ChatGPT is based on the GPT 

(Generative Pre-trained Transformer) family, including GPT-

3.5 and GPT-4 [36], which are capable of a wide range of 

downstream tasks and enable interactive conversations.  

Although current generative models have achieved 

remarkable performance, it is important to note that their 

performance improves at the expense of exponentially grown 

parameter scale. These parameters are not readily reusable for 

other models [37], [38], [39], and it becomes increasingly 

challenging to interpret the results [40], [41]. Additionally, the 

learning processes of mainstream generative models are 

predominantly data-driven, lacking knowledge-driven 

mechanisms. Therefore, it is highly beneficial to develop a 

framework that can enhance the interpretability of generative 

models and embrace both data and knowledge driven 

mechanisms. For example, Zhong et al. proposed the E2S2 

framework [42] to enhance the overall performance of 

encoder-decoder models by incorporating more effective self-

supervised information into the encoders. 

B. Fuzzy System 

In 1965, American automatic control expert L.A. Zadeh 

proposed the concept of fuzzy sets, which led to the rapid 

development of fuzzy theory. Fuzzy system defines input, 

output and state variables on fuzzy sets. It is a representative 

uncertainty reasoning system and excels in solving nonlinear 

modeling problems. Fuzzy systems are now widely used in 

automatic control, pattern recognition, decision analysis, time 

series signal processing, among other tasks. Currently, there 



are two main branches of fuzzy systems: Mamdani fuzzy 

systems and TSK (Takagi-Sugeno-Kang) fuzzy systems. TSK 

fuzzy system, in particular, has strong data-driven learning 

ability and good interpretability, which has garnered extensive 

attention in recent years. 

Fuzzy reasoning in fuzzy system is approximate and non-

deterministic, with both premises and conclusions being 

inherently fuzzy. By fuzzy reasoning, conclusions are derived 

from premises using hypothetical fuzzy propositions, known 

as fuzzy rules. A rule base is formed with multiple fuzzy rules. 

In the traditional and most widely used first-order TSK fuzzy 

system, the kth rule of its fuzzy rule base, i.e., the hypothetical 

fuzzy proposition IF-THEN rule, is represented as shown in 

(1). In this representation, the IF part constitutes the fuzzy rule 

antecedent, and the THEN part constitutes the fuzzy rule 

consequent. 

𝐼𝐹 𝑥1 𝑖𝑠 𝐴1
𝑘  ∧ 𝑥2 𝑖𝑠 𝐴2

𝑘   ⋯ ∧  𝑥𝐷  𝑖𝑠𝐴𝐷
𝑘 , 

𝑇𝐻𝐸𝑁 𝑓𝑘(𝑥) = 𝑝0
𝑘 + 𝑝1

𝑘𝑥1 + ⋯ + 𝑝𝐷
𝑘 𝑥𝐷 

𝑘 = 1,2,3, ⋯ , 𝐾 (1) 

In the above equation, 𝐷  is the dimension of the sample 

feature space, 𝐾 is the number of rules, 𝑥𝑗(𝑗 = 1, 2, 3, … , 𝐷) is 

the 𝑗th feature of the input vector 𝒙, and 𝐴𝑗
𝑘 is the antecedent 

fuzzy set of the 𝑘th fuzzy rule on the jth feature of the input 

vector 𝒙 . The symbol ∧  denotes the fuzzy conjunction 

operator. The function 𝑓𝑘(. )  is the consequent processing 

function of the kth rule, which, in this context, is a classical 

linear function used to derive the output of the kth rule. The 

parameter 𝑝𝑗
𝑘(𝑗 = 1, 2, 3, … , 𝐷)  is the jth parameter of the 

linear function adopted by the kth rule consequent. 

Construction of the antecedents and consequents of the TSK 

fuzzy system is detailed in Part 1 of the Supplementary 

Materials. 

III. GENERATIVE FUZZY SYSTEM 

A. Concept and Structure 

 

Fig. 1. Structure of Generative Fuzzy System Framework (GenFS) 

Definition 1: Generative Fuzzy System Framework 

(GenFS). GenFS consists of a generative fuzzification module, 

a generative fuzzy rule base, a fuzzy inference machine, and a 

generative fuzzy rule combination mechanism, as illustrated in 

Fig. 1. GenFS operates by processing input data through the 

generative fuzzification module. Reasoning is then performed 

with generative fuzzy rules to draw fuzzy inference 

conclusions under given preconditions. These inference 

conclusions are integrated through an efficient generative 

fuzzy rule combination mechanism to yield the system’s 

output. GenFS is a novel framework that combines generative 

models and classical fuzzy systems, enabling fuzzy systems to 

handle complex generative tasks.  

Definition 2: Generative Fuzzification (GF). It is the process 

of delegate election of fuzzy sets to transform data into a more 

representative form and calculate the similarity between the 

inputs and the delegates.  

Definition 3: Generative Fuzzy Rule Consequent (GFRC). 

GFRC is an intelligent fuzzy rule consequent that employs 

generative models as the consequent processing unit to 

enhance learning ability. GFRC can be represented as follows: 

𝒈𝑘 = 𝐺𝐹𝑅𝐶𝑘(𝒙) (2) 

where 𝑘 = 1,2,3, … , 𝐾, 𝐾 is the number of rules in the fuzzy 

system, 𝐺𝐹𝑅𝐶𝑘  is the generative rule consequent processing 

unit of the kth rule, and 𝑔𝑘  is the generative data of the kth 

rule. 

Definition 4: Generative Fuzzy Rules. Generative Fuzzy 

Rules are composed of antecedents with Generative 

Fuzzification and GFRCs. The kth generative fuzzy rule of the 

rule base can be expressed as follows: 

𝐼𝐹 𝒙 𝑖𝑠 𝐺𝐹(𝒙𝑑𝑙𝑔
𝑘 ) , 𝑇𝐻𝐸𝑁 𝒈𝑘 = 𝐺𝐹𝑅𝐶𝑘(𝒙) (3) 

where 𝒙  is the input data and 𝐺𝐹(𝒙𝑑𝑙𝑔
𝑘 )  is the generative 

fuzzification function corresponding to the kth rule antecedent, 

represented by 𝒙𝑑𝑙𝑔
𝑘 . 

Definition 5: Generative Fuzzy Rule Combination 

Mechanism (GFRCM). GFRCM is an intelligent decision-

making mechanism for generative tasks. Its purpose is to 

select applicable rule combination strategies to produce crisp 

and unambiguous results for different generative scenarios. 

When processing structured data with aligned features, 

GFRCM employs the weighted sum method to combine the 

outputs of all the rules. For unstructured output data, GFRCM 

uses the maximum defuzzification method, selecting the 

output of the rule with the highest fire strength as the final 

result. Eq. (4) provides the generalized form of generative 

fuzzy rule combination mechanism: 

𝒚 = 𝐺𝐹𝑅𝐶𝑀(𝑮) = {
∑ 𝜇̃𝑘𝒈𝑘

𝐾

𝑘=1

, 𝑮 𝑖𝑠 𝑎𝑙𝑖𝑔𝑛𝑒𝑑

𝒈𝐴𝑟𝑔𝑚𝑎𝑥(𝝁̃), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(4) 

where 𝑮 = {𝑔1, 𝑔2, 𝑔3, … , 𝑔𝐾}, 𝒈𝑘 is the output of kth rule, 𝜇̃𝑘 

is the fire strength of the kth rule, and 𝝁̃ = [𝜇̃1, 𝜇̃2, 𝜇̃3, … , 𝜇̃𝐾]. 
When 𝑮  is structured and the features are aligned, the fire 

strengths are used as weights to weight and sum all the rule 

outputs. Otherwise, the rule output with the maximum fire 

strength is selected as the final output, where 𝐴𝑟𝑔𝑚𝑎𝑥(𝝁̃) 

function is used to obtain the index value of the maximum fire 

strength. 

B. Construction of Generative Fuzzy Rule Antecedents 

The construction of generative fuzzy rule antecedents is a 

crucial task in modeling generative fuzzy systems. Classical 

fuzzy systems use the membership of the crisp data structured 
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features corresponding to all the fuzzy sets as the fuzzification 

results. However, the inputs of generative tasks often vary in 

length after serialization, classical fuzzification methods are 

inadequate for directly handling unstructured data. Therefore, 

a novel generative fuzzification method for complex 

generative tasks is developed. 

Membership calculation in generative fuzzification method 

needs to solve two key problems – election of delegates for 

fuzzy sets and calculation of similarity between the inputs and 

the delegates.  

Delegate Election. A delegate of a set is a specific element 

of the set [43], [44]. The election of a delegate element 

simplifies the understanding and manipulation of the structure 

and properties of the set. In generative tasks, the delegate of a 

fuzzy set is a specific sample within the set that has a high 

degree of similarity in structure and properties with other 

samples. The way of delegate election can be based on expert 

experience or methods such as clustering [45]. Each fuzzy set 

has its own individual delegate. The election of delegates can 

be expressed as  

𝑿𝑑𝑙𝑔 = 𝐷𝑆𝑀(𝑿, 𝐾) (5) 

where 𝑿𝑑𝑙𝑔 = [𝑥𝑑𝑙𝑔
1 , 𝑥𝑑𝑙𝑔

2 , … , 𝑥𝑑𝑙𝑔
𝐾 ] is a delegate set of 𝐾 rules 

in the system rule base, 𝑿 is the set of corresponding input 

data, 𝐷𝑆𝑀 denotes the method of the delegate election of the 

fuzzy set 𝑿. 

Similarity Calculation. Similarity is expressed as a 

numerical value where a larger value indicates greater 

similarity between two objects. In generative tasks, the inputs 

and delegates are usually unstructured data with unaligned 

features. Therefore, it is necessary to design flexible 

calculation methods that can be applied to different scenarios. 

Similarity can be calculated by data matching, feature aligning, 

and other specific methods. It can be expressed as the 

generalized form, 

𝜇𝑘 = 𝑆𝑖𝑚(𝒙|𝒙𝑑𝑙𝑔
𝑘 ) (6) 

where 𝒙 is the input data, 𝒙𝑑𝑙𝑔
𝑘  is the delegate of the kth fuzzy 

set, 𝑘 = 1,2, … , 𝐾 , 𝐾  is the number of rules, 𝑆𝑖𝑚(. )  is a 

generalized method for calculating the similarity, 𝜇𝑘  is the 

similarity between 𝒙  and the delegate of the corresponding 

fuzzy set of the kth rule, namely, the fire strength of 𝒙 about 

the kth rule. 

To stabilize numerical calculations and avoid feature bias, it 

is usually necessary to normalize similarity, i.e.,  

𝝁̃ = 𝑁𝑜𝑟𝑚(𝝁) =
𝝁

∑ 𝜇𝑘𝐾
𝑘=1

(7) 

where 𝝁̃ = [𝜇̃1, 𝜇̃2, 𝜇̃3, … , 𝜇̃𝐾], 𝝁 = [𝜇1, 𝜇2, 𝜇3, … , 𝜇𝐾]. 
While random seeds may introduce slight variations in the 

delegates generated by clustering, these delegates remain 

highly similar and effectively representative of their domain-

specific sets. As a result, the impact on overall model 

performance is negligible. 

C. Learning and Optimization of GFRCs 

The learning of GFRCs can be regarded as a typical 

machine learning task. In machine learning, the closer the 

predicted data distribution is to the real data distribution, the 

better the model's performance. In generative task, calculating 

the difference between the target sequence and the generated 

sequence is key to the model’s learning process. From a 

probability distribution perspective, the target sequence is 

considered as the conditional probability distribution of the 

input sequence, and the difference between the generated 

sequence and the target sequence is derived from these two 

probability distributions. The cross-entropy loss function is 

widely used to measure this probability distribution difference. 

From a sequence similarity perspective, the difference 

between sequences can be measured by their similarity, so that 

the similarity loss function is also applicable for sequence 

difference calculation. Depending on the scenarios, GenFS 

adopts different loss functions to calculate sequence 

differences. To prevent overfitting, an L2 regularization term 

is added to the loss function. The final loss function is 

generalized as follows: 

ℒ𝐺𝐹𝑅𝐶 (Θ) = 𝑑𝑖𝑓𝑓(𝒚, 𝒚̂) + 𝛾‖Θ‖2 (8) 

where 𝒚 is the ground truth for the target sequences in the 

generative task, 𝒚̂  is the generative sequence, 𝑑𝑖𝑓𝑓(. )  is a 

function to compute the difference between the target and 

generative sequences, ‖Θ‖2  is the L2 regular term of the 

GFRC consequent parameters, and γ(γ > 0)  is a balancing 

parameter. 

For generative tasks, sequence data is high-dimensional and 

sparse, with an uneven token frequency distribution where 

high-frequency and low-frequency tokens appear randomly. 

During training, reducing the learning rate for high-frequency 

tokens and increasing it for low-frequency tokens helps the 

model to learn information effectively from both types of 

tokens. Therefore, GFRC needs to employ optimizers capable 

of adaptively adjusting the learning rate, such as AdaGrad, 

RMSprop, Adadelta and Adam [46], [47], to better 

approximate the optimal values of the model parameters and 

minimize the training loss. The generalized representation of 

the adaptive optimizer is  

Θ′ = 𝐴𝑑𝑎𝑂𝑝𝑡𝑖𝑚(Θ, ℓ𝑠) (9) 

where 𝐴𝑑𝑎𝑂𝑝𝑡𝑖𝑚(. ) is the adaptive optimizer function, ℓ𝑠 is 

the initialised value of the learning rate, and Θ′ is the model 

parameter that has been computationally updated by the 

optimizer. 

All subdomain representatives are obtained using automated 

clustering methods. These representatives are associated with 

a set of domain-specific terms and are used to construct term-

based expressions in the rule antecedents, while the rule 

consequents are modeled using generative models. This 

structure allows GenFS to embed domain-specific prior 

knowledge and expert experience through antecedents, while 

the consequents capture hidden patterns from data via learning 

by combining antecedents and consequents. Hence, GenFS 

achieves a dual-driven mechanism leveraging both knowledge 

and data. To incorporate additional expert rules or domain 

constraints into GenFS, the corresponding domain 

representatives must be provided to construct generative fuzzy 

rules. These rules are seamlessly integrated into the GenFS 

framework to significantly enhance both the term-based 

interpretability and controllability of GenFS-based models. 



D. Generalized Learning Algorithm for GenFS 

In knowledge-based systems, a series of IF-THEN 

conditional statements can be used as rules to express 

knowledge. The parameters of the antecedents can be derived 

from the prior knowledge of human experts or clustering 

techniques. The consequents acquire knowledge by learning 

the mapping relationship of the sequences. The construction of 

generative fuzzy rules involves the construction of the 

antecedents and the learning the consequents’ parameters. 

The model parameters in the generative fuzzy system, 

denoted as Θ, include the parameters of both the antecedents 

and consequents. The consequents can be initialized randomly 

or with pre-trained model parameters. Multiple consequents 

can be trained jointly. The generalized learning algorithm for 

GenFS is described in Algorithm I. 

 
Algorithm I: GenFS Learning 

  p  : input sequence 𝒙 , input sequence set 𝑿 , target sequence 𝒚 , target 

sequence set 𝒀, rule total 𝐾, maximal number of epochs 𝐸; 
O  p  : model parameters Θ 

P    d   : 

// antecedent generation 

1:  cluster fuzzy set delegates 𝑿𝑑𝑙𝑔 = [𝒙𝑑𝑙𝑔
1 , 𝒙𝑑𝑙𝑔

2 , … , 𝒙𝑑𝑙𝑔
𝐾 ] from 𝑿 based on 

(5) 
// consequent learning 

2:      𝑒 = 1, . . , 𝐸 d   

3:        𝒙 in 𝑿 d  

4:          𝑘 = 1. . 𝐾 d  

5:        calculate rule strength 𝜇𝑘 based on (6) 

6:        calculate rule consequent result 𝑔𝑘 

7:        d     

8:      strength normalization 𝝁̃ 

9:      get 𝒚̂ through rule combination based on (4) 

10:    ℒ𝐺𝐹𝑅𝐶(Θ) = 𝑑𝑖𝑓𝑓(𝒚, 𝒚̂) + 𝛾‖Θ‖2 

11:    Θ ≔ argmin
Θ

ℒ𝐺𝐹𝑅𝐶, optime model parameters Θ 

12:    d     

13:   d     

14: return Θ  

IV. SEQUENCE-TO-SEQUENCE LEARNING BASED ON GENFS 

FRAMEWORK 

In this section, we propose a specific generative fuzzy 

system based on the GenFS framework, tailored for sequence-

to-sequence generation tasks. First, we define the specific 

problems involved. Then, we propose a novel multi-scale 

tokenizer, namely fuzzy tokenizer, for sequence splitting 

preprocessing. Finally, we propose an end-to-end generative 

model based on GenFS, named FuzzyS2S. 

A. Definition of Sequence Generation Problems 

In NLP tasks such as machine translation, code generation, 

and summary generation, the text sequence is sliced into 

tokens by tokenizers, and these tokens follow the long-tailed 

distribution of Zipf's Law [48]. Zipf's Law is an empirical law 

that describes the relationship between token frequency and 

token ranking in natural language. The basic formulation of 

Zipf's Law is that in a large corpus, the token frequency is 

inversely proportional to its position in the token ranking list. 

Specifically, the law is expressed as: 

𝑓(𝑛) ≈ 𝐶/𝑛 (10) 

where 𝑓(𝑛) is the frequency of the token in the ranking list, 𝑛 

is the rank of the token, and 𝐶 is a constant. 

In natural language, token occurrences typically follow 

Zipf’s Law, where a small number of tokens appear with high 

frequency while the majority occur infrequently. In real-world 

sequence generation, this distribution gives rise to several 

persistent challenges. Notably, significant variations in 

sequence lengths and token frequency distributions complicate 

model fitting [49], while the inherent ambiguity and 

uncertainty within sequences undermine model robustness and 

generalization capabilities [50]. These characteristics lead to 

two key problems below that warrant focused investigation. 

Problem I: Low-Frequency Underfitting 

In sequence modeling tasks, a substantial proportion of 

tokens appearing at low frequency would result in sparse 

occurrence patterns that hinder the model’s ability to learn and 

generalize their behaviors effectively. This problem is known 

as in low-frequency underfitting, where the model struggles to 

capture the semantics and structural roles of rare tokens, 

thereby degrading overall performance. Addressing this issue 

involves two key strategies: 

(1) Reduce the number of low-frequency tokens through 

techniques such as token merging, clustering, or vocabulary 

optimization. 

(2) Optimize the overall token distribution to enhance the 

learnability of token occurrence patterns, particularly for rare 

events, thus improving the model’s performance across 

diverse sequences. 

Problem II: Significant Variations in Token 

Distributions and Sequence Lengths 

Sequences in real-world generative tasks often exhibit 

considerable variability in both token distributions and 

sequence lengths. The heterogeneity poses additional 

challenges for effective model fitting and generalization: 

(1) Variations in token frequency distributions impair 

model’s ability to generalize different types of sequences, 

particularly when their underlying statistical properties vary 

significantly. 

(2) Variations in sequence lengths can lead to inefficient 

training and complicate the allocation of attention or memory 

resources, especially for models constrained by fixed or 

limited context windows. 

Therefore, it is vital to build robust models capable of 

handling diverse and heterogeneous real-world sequence data 

effectively. 

B. Multiscale Tokenizer based on the priori expert 

knowledge: Fuzzy Tokenizer 

 
Fig. 2. Structure of Fuzzy Tokenizer 

 

To address the issue of low-frequency tokens (Problem I), 

we propose a specific multi-scale tokenizer, called fuzzy 
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tokenizer, which  is a fuzzy system based on multi-scale sub-

word tokenizers [51] that enables adaptive slicing of words at 

different scales to optime the distribution of token frequency. 

The architecture of the fuzzy tokenizer is illustrated in Fig. 2. 

Given the original text sequence 𝒔 , a preliminary token 

sequence 𝒔′  can be obtained as follows after the basic 

tokenization, 

𝒔′ = 𝑇𝑏𝑎𝑠𝑖𝑐(𝒔) = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑁] (11) 

where 𝑇𝑏𝑎𝑠𝑖𝑐 is the basic tokenizer, which splits text sequences 

with spaces or punctuation marks as separators. 𝑛 is the total 

number of tokens of the sequence 𝒔′, 𝑥𝑛 , 𝑛 = 1,2,3, … . , 𝑁 is 

the nth token of the sequence 𝒔′. 

In fuzzy systems, commonly used membership functions 

include triangular, trapezoidal, and Gaussian functions [52]. 

Among them, Gaussian function offers superior smoothness 

and differentiability. It captures the representativeness of high-

frequency terms more accurately while effectively suppressing 

the influence of long-tail tokens inherent in Zipf distributions. 

Therefore, Gaussian function is adopted in this study for the 

antecedents of the rules to calculate the similarity between the 

input tokens and the delegates of the fuzzy sets. The similarity 

is used to represent the fire strength of the fuzzy rules. The fire 

strength 𝜇̃𝑛  of token 𝑥𝑛  with respect to all rules can be 

expressed as follows: 

𝜇𝑛
𝑘 = 𝑆𝑖𝑚ℊ(𝑥𝑛 , 𝑥𝑑𝑙𝑔

𝑘 ) (12) 

𝝁̃𝑛 =
𝝁𝑛

∑ 𝜇𝑛
𝑘𝐾

𝑘=1

(13) 

where 𝜇𝑛
𝑘 is the fire strength of token 𝑥𝑛 with respect to the kth 

rule, i.e., 𝝁𝑛 = [𝜇𝑛
1 , 𝜇𝑛

2 , 𝜇𝑛
3 , … , 𝜇𝑛

𝐾] , and the normalised fire 

strength 𝝁̃𝑛 = [𝜇̃𝑛
1 , 𝜇̃𝑛

2 , 𝜇̃𝑛
3 , … , 𝜇̃𝑛

𝐾], 𝑆𝑖𝑚ℊ is the Gaussian-based 

similarity calculation function for tokens. 

The consequents of the fuzzy tokenizer are sub-word 

tokenizers operating at different scales. The outputs are 

unstructured sub-word sequences. Fuzzy tokenizer selects the 

maximum defuzzification method to obtain the final result as 

follows,  

𝒙𝒏 = 𝑇𝑓𝑢𝑧𝑧
𝐴𝑟𝑔𝑚𝑎𝑥(𝝁̃𝒏)

(𝑥𝑛) (14) 

where 𝒙𝒏 = [𝑥𝑛,1, 𝑥𝑛,2, 𝑥𝑛,3, … , 𝑥𝑛,τ] is the sub-word sequence 

after slicing of token 𝑥𝑛and τ is the total number of sub-words. 

The fuzzy tokenizer splices the results of further slicing to 

obtain the final token sequence 𝒔̃ as follows. 

𝒔̃ = 𝑐𝑜𝑛𝑐𝑎𝑡(𝒙1, 𝒙2, 𝒙3, … , 𝒙𝑁) (15) 

When there are multiple rules with similarly high activation, 

the tokenizer with the coarsest granularity is selected to 

minimize the generated sequence length. Most tokenizers 

include four special tokens: bos (beginning of sequence), eos 

(end of sequence), pad (padding), and unk (unknown). For 

native special symbols in the text, such as @, #, $, %, /, -, _, &, 

we deliberately bypass the multi-scale tokenization process 

and simply handle them with basic tokenization. This prevents 

noisy tokens and ambiguity, thereby avoiding degradation in 

system performance. 

 

Fig. 3. Structure of FuzzyS2S. 𝑇𝐹𝑘 is the Transformer processing unit of the kth rule consequent, 𝒔𝑥 is the input sequence, and 𝒔𝑦 is the target sequence. The 

Preprocess module named Sequence to Vector is to implement the conversion from sequences to word vectors, and the Postprocess module named Embedding to 

Sequence is to convert the decoded word embeddings into the target sequences. 
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By combining fuzzy system and multi-scale learning, the 

fuzzy tokenizer is designed to obtain more optimal splitting 

results based on fuzzy inference, considering the inherent 

fuzziness and uncertainty of the tokens at different scales. By 

integrating sub-word tokenizers of different scales, the fuzzy 

tokenizer leverages the universal approximator properties of 

fuzzy system [53], [54], [55], [56] to approximate the token 

sequences with the best token frequency distribution and 

suitable sequence length. 

C. Sequence-to-sequence GenFS: FuzzyS2S 

This section presents the end-to-end sequence generative 

model FuzzyS2S which is based on GenFS. In FuzzyS2S, we 

implement a special GenFS using Transformer as the 

consequent processing units, denoted as GenFS-Trans. 

FuzzyS2S consists of three modules – Preprocess module, 

GenFS-Trans module and Postprocess module, which are 

described below 

Preprocess Module. This module transforms the original 

input sequences into vectors, reducing the low-frequency 

tokens in the sequences using the fuzzy tokenizer. The source 

sequence 𝒔𝑥  is passed through the fuzzy tokenizer to obtain 

the vector 𝒗𝒙 as follows, 

𝒗𝒙 = 𝑊2𝑉(𝑇𝑓𝑢𝑧𝑧𝑦(𝒔𝒙)) (16) 

where 𝑊2𝑉  represents the method that maps the token 

sequences to vectors. 

The tokens sliced by 𝑇𝑓𝑢𝑧𝑧𝑦  are saved using the classical 

bag-of-words (BoW) model [57], [58], [59]. The input of 

BoW is the sequence of tokens, and the output is the word 

vector, which is an array of indexes of the storage locations, 

and the size 𝑁𝑏𝑎𝑔 of the BoW. The BoW contains two special 

tokens, the start symbol bos and the end symbol eos, which are 

added at the start and end positions of the sequence, 

respectively. 

To construct the antecedents of generative rules, 𝐾 

delegates are selected from the vector set as follows,  

[𝒗𝑑𝑙𝑔
1 , 𝒗𝑑𝑙𝑔

2 , … , 𝒗𝑑𝑙𝑔
𝑘 , … , 𝒗𝑑𝑙𝑔

𝐾 ] = 𝐷𝑆𝑀𝐹𝐶𝑀(𝑽𝑥 , 𝐾) (17) 

where 𝑽𝑥  is the set of input word vector, 𝐷𝑆𝑀𝐹𝐶𝑀(. )  is a 

delegate election method based on Fuzzy C-Means (FCM) 

[60], the primary features considered in FCM-based 

unsupervised clustering include sequence length and the 

frequency of high-occurrence tokens. The fuzzy set delegate is 

obtained by unsupervised fuzzy clustering.  

GenFS-Trans Module. This module is the core of FuzzyS2S. 

It begins by performing fuzzification on the input vectors, then 

conducts the fuzzy inference using the fuzzy inference 

machine, and finally fuses the results of all the rules via the 

GFRCM component. The similarity between the inputs and 

the delegates are computed using methods such as Euclidean 

distance [61], Manhattan distance [62], cosine similarity [63] 

and Jaccard Similarity. Among these, cosine similarity is 

commonly adopted, particularly for large-scale text processing 

tasks, due to its efficiency and effectiveness in capturing 

textual similarity [64]. The formulations involved in the 

module are shown in (18) to (23). Refer to (18), we employ 

cosine similarity to measure the similarity between an input 

sequence and its corresponding set representative. The 

consequent processing units in our framework are based on 

Transformer. While the interpretability of GenFS primarily 

derives from the explainable, term-based representations in its 

antecedents, the consequents remain inherently opaque due to 

the black-box nature of Transformers. According to (19), the 

word vectors are transformed into word embeddings through 

positional encoding to preserve the positional information of 

the token in the sequence. (20) shows that the word 

embeddings output by Transformer are passed through a 

multilayer perceptron (MLP) to raise the feature dimensions to 

𝑁𝑏𝑎𝑔 . Furthermore, in the GFRCM component of GenFS-

Trans, the weighted sum method is used to combine the results 

of all the rules. The fire strengths of the rules serve as weights, 

and the word embeddings are weighed to obtain the target 

word embedding 𝑬𝒎𝑦̂ as shown in (22). Finally, the resulting 

embedding is compressed into the range of (0,1) to obtain the 

𝑬𝒎𝑦̃ matrix through 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 function in (23). 

𝜇𝑠
𝑘 = 𝑆𝑖𝑚𝑐𝑜𝑠(𝒗𝒙|𝒗𝑑𝑙𝑔

𝑘 ) (18) 

𝑬𝒎𝑥 = 𝑃𝑜𝑠 (𝐸𝑚𝑏(𝐵(𝒗𝒙))) (19) 

𝑬𝒎𝑦̂
𝑘 = 𝑀𝐿𝑃(𝑇𝐹𝑘(𝑬𝒎𝑥)) (20) 

𝝁̃𝑠 =
𝝁𝑠

∑ 𝜇𝑠
𝑘𝐾

𝑘=1

(21) 

𝑬𝒎𝑦̂ = ∑ 𝜇̃𝑠
𝑘𝑬𝒎𝑦̂

𝑘

𝐾

𝑘=1

(22) 

𝑬𝒎𝑦̃ = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑬𝒎𝑦̂) (23) 

where the cosine distance algorithm 𝑆𝑖𝑚𝑐𝑜𝑠(. )  is used to 

calculate the similarity between the input data and the 

delegates; 𝝁𝑠 = [𝜇𝑠
1, 𝜇𝑠

2, 𝜇𝑠
3, … , 𝜇𝑠

𝐾] , normalized similarity 

𝝁̃𝑠 = [𝜇̃𝑠
1, 𝜇̃𝑠

2, 𝜇̃𝑠
3, … , 𝜇̃𝑠

𝐾]; 𝑣𝑥  is the word vector of the source 

sequence, 𝐵(. )  is to add bos at the beginning of the word 

vector, 𝐸𝑚𝑏(. ) is to compute the word embedding of the word 

vector, 𝑃𝑜𝑠(. )  is to encode the position of the word 

embedding; 𝑇𝐹𝑘 is the Transformer processing unit for the kth 

consequent, 𝑬𝒎𝑥 ∈ ℝ(𝑁+1)×𝐷𝑖𝑚, 𝐷𝑖𝑚 is the dimensionality of 

the word embedding, 𝑬𝒎𝑦̂ ∈  𝑅(𝑀+1)×𝑁𝑏𝑎𝑔 , 𝑬𝒎𝑦̃  is the 

predictive probability matrix, 𝑬𝒎𝑦̃ ∈  ℝ(𝑀+1)×𝑁𝑏𝑎𝑔 , the 

ground true of the target embedding 𝑬𝒎𝑦 =

𝑃𝑜𝑠 (𝐸𝑚𝑏 (𝐸(𝒗𝒚))), 𝒗𝒚 is the vector of the target sequence, 

𝐸(. ) is to add eos at the end of the word vector. 

Postprocess Module. This module is responsible for 

converting the word embeddings output from the GenFS-

Trans module into the target sequence. In this module, the 

𝐴𝑟𝑔𝑚𝑎𝑥 function is used to obtain the index of the maximum 

value of the probability for each dimension, and 𝑀 + 1 tokens 

are then predicted. The process is expressed as 

𝒔𝑦̂ = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑉2𝑊 (𝐴𝑟𝑔𝑚𝑎𝑥(𝑬𝒎𝑦̃)))) 

= 𝐶𝑜𝑛𝑐𝑎𝑡([𝑦̂1, 𝑦̂2, 𝑦̂3, … , 𝑦̂𝑀, 𝑒𝑜𝑠]) (24) 

where 𝑉2𝑊(. ) is a vector-to-token conversion function and 

𝐶𝑜𝑛𝑐𝑎𝑡(. ) is a function that splices an array of tokens to a 

sequence, FuzzyS2S stops the token prediction when the stop 

marker eos is reached. 



To clearly illustrate the computation and optimization of 

FuzzyS2S, the modeling process is presented in Algorithm II. 

Algorithm II: FuzzyS2S Modeling Process 

  p  : source sequence 𝒔𝒙, target sequence 𝒔𝑦, number of rules 𝐾,maximal 

number of epochs 𝐸; 

O  p  : model parameters Θ 

P    d   : 
// preprocess 

1: Vectorizing 𝒗𝑥 = 𝑊2𝑉(𝑇𝑓𝑢𝑧𝑧𝑦(𝒔𝑥)), 𝒗𝑥 ∈ 𝑽𝑥 

2: Vectorizing 𝒗𝑦 = 𝑊2𝑉(𝑇𝑓𝑢𝑧𝑧𝑦(𝒔𝑦)), 𝒗𝑦 ∈ 𝑽𝑦 

3: Select 𝐾 delegates [𝒗𝑑𝑙𝑔
1 … , 𝒗𝑑𝑙𝑔

𝐾 ] from 𝑽𝑥 as (17) 

// GenFS-Trans 

4:     𝑒 = 1. . 𝐸 d  // training epoch 

5:        𝒗𝑥, 𝒗𝑦 in 𝑽𝑥, 𝑽𝑦 

6:          𝑘 = 1. . 𝐾 d  // rule calculation  

7:       calculate rule strength 𝜇𝑠
𝑘 based on (18) 

8:       calculate rule consequent, 𝑬𝒎𝑦̂
𝑘 based on (19-20) 

9:        d     

10:    𝝁̃𝑠 =
𝝁𝑠

∑ 𝜇𝑠
𝑘𝐾

𝑘=1

 //rule strength normalization 

11:    𝑬𝒎𝑦̂ = ∑ 𝜇̃𝑠
𝑘𝑬𝒎𝑦̂

𝑘𝐾
𝑘=1  //rule combination 

12:    𝑬𝒎𝑦̃ = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑬𝒎𝑦̂) 

13:    𝑬𝒎𝑦 = 𝑃𝑜𝑠 (𝐸𝑚𝑏 (𝐸(𝒗𝒚))) 

14:   ℒ𝐺𝐹𝑅𝐶(Θ) = 𝑑𝑖𝑓𝑓(𝑬𝒎𝑦, 𝑬𝒎𝑦̃) + 𝛾‖Θ‖2 based on (8) 

15:   optimize model parameters Θ ≔ argmin
Θ

ℒ𝐺𝐹𝑅𝐶  

16:     d     
17:   d     

// postprocess 

18: the embedding 𝑬𝒎𝑦̃ to the sequence 𝒔𝑦̂ based on (24) 

19: return Θ 

Although the current GenFS-based FuzzyS2S model is 

designed specifically for text generation, the underlying 

GenFS framework is highly extensible. It has the potential for 

adaptation to cross-modal tasks like text-to-image and text-to-

audio generation. To support multimodal outputs, GenFS must 

be extended to incorporate multimodal fuzzy rules along with 

mechanisms for inter-modal alignment. However, this is non-

trivial due to challenges in modeling cross-heterogeneous 

output modalities and developing robust alignment strategies 

between them. Future work will focus on these challenges to 

extend GenFS for a broader range of multimodal generative 

tasks. 

V. TESTS AND ANALYSIS 

A. Datasets and Test Setting 

The experiments followed the Train-Validation-Test (TVT) 

approach as outlined in [65]. The samples are divided into 

three parts: training sets, validation sets, and test sets at the 

ratio of 8:1:1 ratio, with 80% of the data for model training, 10% 

for validation during each training epoch, and the remaining 

10% for testing the final model. We employed 10-fold cross-

validation [66], repeating the entire experiment 10 times and 

reporting the averaged results. 

Three types of data were used, including machine 

translation, summary generation, and code generation, totaling 

12 datasets. The datasets for machine translation are WMT14 

[65], Tatoeba [67] , EUconst [68] and Ubuntu [68]. The 

datasets for summary generation are CNN/DM (CNN Daily 

Mail) [69], [70], SAMSum [71], XLSum[72] and BillSum 

[73]. The datasets for code generation are HS (HearthStone) 

[74], MTG (Magic the Game) [74], GEO (Geoquery) and 

Spider [75]. Details of these datasets are provided in Part 2 of 

the Supplementary Materials. 

The experiments were conducted on a computer equipped 

with an Intel i7 CPU (12 cores, 2.53 GHz), an NVIDIA RTX 

4090 GPU (24 GB, 2.28 GHz), and 96 GB of RAM. 

GenFS is a modeling framework based on generative fuzzy 

rules, in which the number of rules is the most critical 

hyperparameter. In the GenFS-based FuzzyS2S, we determine 

the number of rules using the “domain decomposition” as 

follows. First, we analyze the task to identify the major 

domains involved and based on the statistical descriptions of 

the dataset and expert knowledge of human experts or LLM-

based agents, we further decompose each domain into several 

subdomains. If a subdomain remains overly complex, it can be 

recursively subdivided. The final number of subdomains 

determines the number of fuzzy rules required. By applying 

domain decomposition to the 12 datasets, the sequences can be 

categorized into three subdomains based on their lengths, i.e., 

long, medium, and short. Accordingly, the number of rules is 

set to 3 by default. 

TABLE I  
PARAMETERS, STRUCTURE AND COMPLEXITY OF BASELINES 

  d   P                LOP   PU 

(Code) 5-Small  35  60  6 +6D 1.81 × 1020 240 B 

(Code) 5-Base  35  222  12 +12D 6.62 × 1020 888 B 

(Code) 5-Large  35  737  24  +24D 2.35 × 1021 2.9GB 

 2S2- 5 42  745  24 +24D 2.71 × 1021 3.1GB 
 ransformer  4  42  3 +3D 1.26 × 1020 168 B 

Avg rans 132  3(3 +3D) 3.61 × 1020 528 B 

FuzzyS2S 137  3(3 +3D) 3.63 × 1020 548 B 

*“E” denotes a  ransformer encoder layer,  hile “D” denotes a decoder layer. 

E2S2-T5 is the model obtained by enhancing the encoders of T5-Large using 

the E2S2 framework. 

To verify the advancement of FuzzyS2S more effectively, 

we designed a hybrid model with structure and 

computational complexity similar to FuzzyS2S, namely 

AvgTrans. It fused multiple Transformers through the 

averaged sum method. The comparative methods in the tests 

are Transformer, T5 family (T5, CodeT5 [76], E2S2-T5) 

AvgTrans (averaged sum) and FuzzyS2S (weighted sum). 

The model parameter sizes (Param), model structure 

(Structure), training floating-point operations (FLOPs), and 

GPU memory usage during training (GPU) for all methods 

are shown in Table I. It can be seen from Table I that the 

model structures of FuzzyS2S and AvgTrans are similar, 

both consisting of 3 Transformers. To ensure fairness in the 

comparisons, the T5 family models are retrained on the 

relevant datasets to eliminate potential biases arising from 

pretraining corpora or task-specific differences. Further 

details of these models can be found in Part 3(A) of the 

Supplementary Materials. The parameter settings for 

FuzzyS2S and the indicators for model evaluation, 

including ACC, BLEU [77], METEOR [78], ROUGE-1(R1), 

ROUGE-2(R2), and ROUGE-L(RL), are detailed in Part 3(B) 

and 3(C) of the Supplementary Materials. The codes and 

model parameters of our FuzzyS2S are available at 

https://github.com/chinesebear/fuzzys2s. 

B. Analysis of Sequence Generation Tests 

1) Analysis of Machine Translation Tests 

https://github.com/chinesebear/fuzzys2s


From the results in Table II, it can be seen that FuzzyS2S 

outperforms E2S2-T5 in terms of accuracy, 50.88 higher on 

the Tatoeba dataset and 52.10 higher on the EUconst dataset. 

Furthermore, the BLEU score is 11.03 higher and the 

METEOR score 1.91 higher than that of E2S2-T5 on the 

EUconst dataset. Although the performance of FuzzyS2S in 

terms of BLEU and METEOR scores are not always better 

than the models of the T5 family, FuzzyS2S still shows an 

overall advantage. The results of comparison can be analyzed 

as follows:  

(1) FuzzyS2S enhances accuracy by leveraging the 

interconnectivity between tokens of different scales. When the 

occurrence frequency of coarse scale tokens is small, it 

becomes challenging for the model to capture their semantic 

information. By splitting the text sequence into fine-scale 

tokens, the occurrence frequency of these tokens can be 

increased.  

(2) The generative consequents of FuzzyS2S are based on 

Transformer, which employs absolute positional coding [79]. 

In contrast, models of the T5 family employ relative positional 

coding [80]. However, the relative position coding considers 

the relative distance between the current token position and 

the position of the token under attention when calculating the 

attention score [80]. This approach focuses more on the 

fluency of the sequences, which can decrease the accuracy of 

the token prediction.  

Above all, FuzzyS2S exhibits better performance than 

AvgTrans. This improvement can be attributed to the fusion of 

the GFRCs (Transformer) using the weighted sum method, 

with fire strengths as weights. This method is similar to the 

naive soft attention mechanism [81], [82], [83]. As fire 

strength can be changed adaptively based on the inputs, the 

weighted fusion method functions as a dynamically adaptive 

soft-attention mechanism. This attention mechanism enables 

FuzzyS2S to outperform Transformer in general. 

TABLE II  
RESULTS OF MACHINE TRANSLATION TESTS 

Model 
WMT14 Tatoeba EUconst Ubuntu 

ACC BLEU METEOR· ACC BLEU METEOR ACC BLEU METEOR ACC BLEU METEOR 

T5-Small 6.70±0.12 27.31±0.08 53.71±0.03 7.23±0.04 36.20±0.06 61.37±0.04 2.97±0.11 36.75±0.03 75.88±0.05 4.24±0.01 2.76±0.10 15.61±0.01 
T5-Base 7.33±0.05 29.96±0.12 55.74±0.06 7.89±0.11 39.96±0.08 64.07±0.11 2.81±0.10 38.26±0.08 77.14±0.06 4.48±0.13 3.33±0.07 16.52±0.03 

T5-Large 7.40±0.01 30.92±0.12 56.81±0.08 8.01±0.04 41.45±0.11 65.19±0.02 2.87±0.09 38.59±0.13 77.42±0.05 5.65±0.05 3.90±0.05 17.43±0.10 
E2S2-T5 8.21±0.03 31.54±0.04 57.80±0.05 9.04±0.01 42.13±0.07 65.20±0.02 3.51±0.06 38.61±0.09 77.21±0.03 6.32±0.07 4.23±0.08 19.58±0.07 
Transformer 7.71±0.11 6.15±0.05 31.9±0.11 59.91±0.07 37.80±0.09 59.01±0.05 55.45±0.10 37.72±0.04 69.88±0.08 14.56±0.11 7.97±0.10 41.24±0.04 
AvgTrans 8.10±0.17 11.42±0.07 37.65±0.03 57.63±0.10 36.58±0.07 62.56±0.04 52.68±0.13 40.69±0.08 73.68±0.14 14.36±0.03 7.90±0.16 41.69±0.09 

FuzzyS2S 8.49±0.13 11.20±0.10 39.36±0.09 59.92±0.11 37.83±0.13 66.08±0.10 55.61±0.11 49.64±0.13 79.12±0.10 14.67±0.07 7.99±0.10 41.78±0.02 

TABLE III  
RESULTS OF SUMMARY GENERATION TESTS 

Model 
CNN/DM SAMSum XLSum BillSum 

R1 R2 RL R1 R2 RL R1 R2 RL R1 R2 RL 

T5-Small 41.12±0.09 19.56±0.11 38.35±0.04 23.48±0.13 6.10±0.04 18.69±0.08 17.84±0.10 4.96±0.03 12.97±0.05 24.89±0.02 10.23±0.12 17.76±0.06 
T5-Base 42.05±0.00 20.34±0.09 39.40±0.10 24.14±0.09 6.85±0.02 18.79±0.12 18.16±0.06 5.08±0.12 12.65±0.07 25.45±0.05 11.76±0.01 18.77±0.12 

T5-Large 42.50±0.13 20.68±0.05 39.94±0.07 27.36±0.06 9.09±0.09 22.09±0.06 23.14±0.10 7.14±0.02 16.04±0.04 28.64±0.09 13.67±0.13 21.75±0.08 
E2S2-T5 42.75±0.01 21.34±0.01 39.90±0.04 28.31±0.09 8.11±0.03 22.21±0.06 23.44±0.07 7.01±0.03 15.60±0.05 30.21±0.07 14.04±0.08 23.59±0.03 
Transformer  24.51±0.02 4.51±0.06 18.08±0.04 30.16±0.03 6.03±0.06 25.70±0.02 18.46±0.08 3.69±0.10 16.59±0.20 40.92±0.09 15.74±0.21 27.54±0.03 
AvgTrans 29.77±0.12 11.36±0.10 20.36±0.19 33.58±0.06 12.69±0.05 27.63±0.11 20.56±0.15 6.96±0.13 16.76±0.09 42.56±0.08 18.63±0.08 28.37±0.03 

FuzzyS2S 32.10±0.09 12.14±0.12 23.24±0.09 35.13±0.12 13.26±0.04 28.25±0.11 23.76±0.08 7.28±0.12 16.88±0.07 42.83±0.11 20.26±0.01 30.45±0.10 

TABLE IV 
RESULTS OF CODE GENERATION TESTS 

Model 
HS MTG GEO Spider 

ACC BLEU METEOR ACC BLEU METEOR ACC BLEU METEOR ACC BLEU METEOR 

CodeT5-Small 3.85±0.12 36.56±0.07 37.34±0.11 2.44±0.01 46.98±0.01 64.93±0.12 7.39±0.03 43.00±0.02 62.42±0.09 3.25±0.04 16.19±0.09 43.19±0.05 
CodeT5-Base 3.55±0.06 63.56±0.12 72.14±0.03 2.64±0.05 60.01±0.04 71.57±0.04 7.88±0.08 66.21±0.07 77.57±0.03 5.39±0.02 26.55±0.00 54.08±0.04 

CodeT5-Large 4.53±0.09 66.02±0.05 75.67±0.00 3.38±0.11 73.47±0.07 76.97±0.02 8.49±0.09 84.18±0.23 88.50±0.13 5.55±0.01 26.98±0.01 57.49±0.03 
E2S2-T5 4.36±0.05 66.33±0.0 75.21±0.02 3.19±0.08 72.68±0.01 76.40±0.05 8.96±0.04 84.11±0.05 88.01±0.06 8.46±0.08 26.30±0.03 56.63±0.04 
Transformer 44.67±0.05 70.82±0.06 70.44±0.03 27.34±0.05 58.70±0.04 63.10±0.05 83.47±0.12 89.65±0.05 89.66±0.07 36.29±0.06 21.48±0.04 46.28±0.08 
AvgTrans 45.69±0.17 70.66±0.02 71.32±0.16 28.00±0.12 63.59±0.17 73.61±0.14 85.11±0.06 90.33±0.03 90.52±0.01 35.99±0.12 22.01±0.03 47.01±0.04 

FuzzyS2S 48.89±0.07 72.14±0.14 76.15±0.08 30.30±0.07 73.98±0.10 76.98±0.04 87.33±0.08 91.66±0.13 92.54±0.04 36.35±0.04 22.33±0.07 48.60±0.07 

TABLE V 
RESULTS OF FUZZYS2S ABLATION TESTS 

Model 
EUconst SAMSum HS 

ACC BLEU METEOR R1 R2 RL ACC BLEU METEOR 

B+F+G 55.61±0.11 49.64±0.04 79.12±0.04 35.13±0.10 13.26±0.09 28.25±0.07 48.89±0.01 72.14±0.08 76.15±0.05 

B+𝑺𝟏+G 55.31±0.07 46.05±0.07 73.23±0.06 30.91±0.01 7.43±0.11 26.51±0.06 47.22±0.13 71.01±0.09 72.16±0.03 

B+𝑺𝟐+G 55.42±0.05 47.23±0.04 74.11±0.10 32.21±0.08 8.54±0.07 27.23±0.07 47.56±0.09 71.56±0.04 72.96±0.08 

B+𝑺𝟑+G 55.53±0.12 48.07±0.06 75.33±0.12 32.88±0.10 10.90±0.05 27.92±0.10 47.63±0.14 71.87±0.06 73.52±0.04 

B+G 55.39±0.06 46.01±0.11 73.20±0.13 30.95±0.06 7.48±0.09 26.54±0.01 47.82±0.05 71.11±0.04 72.15±0.11 
B+T 54.65±0.01 45.59±0.07 72.63±0.06 30.16±0.01 6.03±0.05 25.70±0.08 44.67±0.13 70.82±0.11 70.44±0.06 

*“B” refers to basic tokenizer, “F” refers to fuzzy tokenizer, “𝑆1”, “𝑆2” and “𝑆3” refers to a single coarse, medium and fine tokenizer respectively, “G” refers to 

the GenFS-Trans module which contains multiple transformers, and “ ” refers to a single transformer. 

TABLE VI 



FUZZY TOKENIZER ABLATION TEST IN TERM OF TRAINING SPEED 

Model 

EUconst SAMSum HS 

Speed min 

@epoch 

CPU% 

@epoch 

GPU% 

@epoch 

Speed min 

@epoch 

CPU% 

@epoch 

GPU% 

@epoch 

Speed min 

@epoch 

CPU% 

@epoch 

GPU% 

@epoch 

B+F+G 2.11±0.09 3.21±0.07 13.23±0.04 11.90±0.05 4.20±0.18 35.11±0.18 1.51±0.22 2.11±0.08 11.96±0.14 

B+𝑺𝟏+G 1.90±0.18 3.61±0.22 12.11±0.18 11.22±0.06 3.61±0.20 34.21±0.12 1.24±0.04 2.54±0.15 10.23±0.15 

B+𝑺𝟐+G 2.23±0.12 3.70±0.20 12.34±0.13 12.69±0.03 3.58±0.11 36.10±0.20 1.91±0.07 2.22±0.03 11.68±0.01 

B+𝑺𝟑+G 3.01±0.15 3.58±0.04 15.01±0.11 13.54±0.19 3.55±0.14 37.18±0.13 2.70±0.08 2.65±0.14 13.32±0.09 

 

2) Analysis of Summary Generation Tests 

The results of summary generation tests are presented in 

Table III. The results demonstrate that FuzzyS2S outperforms 

AvgTrans on all datasets, indicating that FuzzyS2S’s weighted 

sum method is better than AvgTrans’s averaged sum method. 

Furthermore, FuzzyS2S exhibits superior performance on the 

three datasets (SAMSum, XLSum and BillSum) when 

compared to models of the T5 family, where the value of RL 

is 5.23 higher on average. Since the input for the summary 

generation task is an entire article or a report, which 

constitutes a long sequence, the problem of long-term 

dependency is significant. One potential solution is to 

introduce attention mechanisms. The generative rule 

consequent of FuzzyS2S is a Transformer with a multi-head 

attention mechanism. Additionally, there is a layer of rule-

level soft attention mechanism on top of all the generative rule 

consequents of FuzzyS2S. This suggests that FuzzyS2S is 

well-suited for the summary generation task and favorable test 

results are thus obtained. 

3) Analysis of Code Generation Tests 

The test results on the code generation dataset are shown in 

Table IV. The results show that the accuracy of FuzzyS2S is 

significantly better than that of CodeT5 on all datasets, with an 

average of 28.69. Compared with classical Transformer, 

FuzzyS2S also demonstrates a higher accuracy of 2.77 on 

average. On the HS, MTG, and GEO datasets, the fluency of 

FuzzyS2S is also better than or close to CodeT5. Since 

CodeT5 utilizes relative positional encoding, due to the strong 

correlations between tokens in natural language sequences, 

relative positional encoding is particularly effective in 

enhancing fluency when processing natural language. 

However, code sequences, unlike natural language, have 

weaker inter-word-element correlations. Thus, CodeT5 

method that is based on relative positional coding does not 

show significant performance improvement in fluency when 

compared to FuzzyS2S and Transformer. 

C. Ablation Test 

Table V shows the results of ablation test conducted 

evaluating the performance with different combinations of 

FuzzyS2S components. The components include basic 

tokenizer, fuzzy tokenizer, coarse tokenizer, medium tokenizer, 

fine tokenizer, GenFS-Trans module and single transformer. 

The results in the first four rows indicate that the fuzzy 

tokenizer yields superior model performance when compared 

to using any single-scale tokenizer (coarse, medium, or fine). 

Comparing the results of the first row with the fifth row, it is 

evident that the fuzzy tokenizer contributes to model 

performance enhancement on almost all the datasets. 

Furthermore, comparing the second and the third row, it is 

clear that GenFS-Trans enhances performance across all 

datasets. This enhancement is also evident in machine 

translation and summary generation tasks, validating the 

effectiveness of GenFS-Trans in contributing to FuzzyS2S's 

overall performance. Further analysis of the ablation tests is 

given in Part 4 of the Supplementary Materials. To assess the 

impact of tokenization scale on training efficiency, we 

performed ablation study on the fuzzy tokenizer. As shown in 

Table VI, the coarse-scale tokenizer yields the shortest 

training time, followed by medium-scale tokenizer, and the 

fine-scale tokenizer incurs the highest training cost. This is 

because fine-scale tokenizer produces more tokens and 

increases model fitting time. The training time of fuzzy 

tokenizer is close to that of the medium-scale tokenizer, 

indicating that a balance between token size and 

computational cost is achieved through multi-scale integration.  

D. Convergence Analysis 

The convergence of FuzzyS2S when trained on EUconst, 

SAMSum, and HS datasets are illustrated in Fig. 4. From 

the figure, it can be observed that the loss of FuzzyS2S 

tends to converge after 20, 30 and 20 epochs of training on 

the three datasets, respectively. The test results demonstrate 

that FuzzyS2S exhibits relatively good stability and 

convergence.  

 

Fig.4. Convergence Analysis of FuzzyS2S on EUconst, SAMSum, HS 

Datasets 

E. Interpretability Analysis 

The interpretability of FuzzyS2S was analyzed and 

demonstrated through a case study as shown in Fig. 5, where 

English sentences were translated into French from the 

Tatoeba dataset. In the test, we configured the GenFS-Trans 

module in FuzzyS2S to contain the three rules below:  

IF 𝒔𝑥 is Long Sentence,      𝒔𝑦 = 𝑇𝐹𝐿𝑜𝑛𝑔(𝒔𝑥);  

IF 𝒔𝑥 is Middle Sentence,      𝒔𝑦 = 𝑇𝐹𝑀𝑖𝑑𝑑𝑙𝑒(𝒔𝑥); (25) 

IF 𝒔𝑥 is Short Sentence,      𝒔𝑦 = 𝑇𝐹𝐿𝑜𝑤(𝒔𝑥);  

The input English sentence in Fig. 5 has a length of 16, and 

its length and token frequency distribution characteristics are 

more similar to the description of the second rule. The actual 

similarity calculation indicates that the input sentence is more 

similar to the delegate in the Middle Sentence fuzzy set. 

Consequently, the result obtained through the GFRCM 

mechanism is consistent with the output of the Middle 

Sentence fuzzy rule. This example demonstrates that when the 

features of the input sentence align with the fuzzy term 



descriptions of the generative rule antecedent, the final output 

closely matches the output of the corresponding rule. This 

shows that the generative process of FuzzyS2S is semantically 

interpretable, which verifies the semantic interpretability of 

GenFS. 

To evaluate the term-based interpretability of GenFS, we 

randomly selected 100 sentences from each of the four 

datasets – WMT14, Tatoeba, EUconst, and Ubuntu, and 

labeled them as “Long”, “ edium”, or “Short”.  e 

compared GenFS classification with human expert 

judgment. As shown in Fig. 6, the agreement rates are 97%, 

98%, 94%, and 97%, respectively, indicating that GenFS's 

term-based predictions are closely well-aligned with human 

assessment, thereby demonstrating the model’s 

interpretability. 

 

Fig. 5. An example of interpretability analysis: long, middle and short English 

sentences are translated into French in FuzzyS2S. The length of the delegate 

of Long Sequence fuzzy set is 25, the length of the delegate of Middle 
Sequence fuzzy set is 12, the length of the delegate of Short Sequence fuzzy 

set is 6, and TFD refers to Token Frequency Distribution. 

 

Fig. 6. Sentence length term-based consistency comparison between the 

GenFS model and human experts across four datasets (WMT14, Tatoeba, 

EUconst and Ubuntu).  

F. Further Analysis 

In FuzzyS2S, fuzzy tokenizer is capable of optimizing the 

token frequency distribution through multi-scale tokenization. 

The capability is analyzed in Part 5 of the Supplementary 

Materials.  

Besides, number of rules is a key hyperparameter in 

FuzzyS2S. The number of rules increases linearly with the 

model's spatial complexity and GPU memory usage. While 

incorporating more rules can improve the capability of 

FuzzyS2S, the risk of overfitting increases and performance 

degrades. Thus, there exists a trade-off between performance 

and the number of rules. To this end, we conducted parameter 

sensitivity analysis on the number of rules which is discussed 

in Part 6 of the Supplementary Materials. 

VI. CONCLUSION 

The learning process of current generative models is 

typically data-driven. It lacks knowledge-driven mechanisms 

and the modeling process is like a black box. To address these 

issues, we propose a novel generative modeling framework 

based on fuzzy systems, named GenFS, which is capable of 

handling complex generative modeling tasks effectively. 

Furthermore, GenFS incorporates the classical fuzzy system's 

dual-driven learning mechanism of both data and knowledge 

to offer semantical interpretability. For sequence-to-sequence 

generative learning tasks, we propose a novel end-to-end 

generative model based on GenFS framework, named 

FuzzyS2S, which is effective for machine translation, 

summary generation, and code generation. Our test results 

demonstrate that FuzzyS2S significantly outperforms the 

classical Transformer and surpasses the state-of-the-art T5 

family models.  

Despite its outstanding performance, GenFS has several 

limitations. The consequents of GenFS lack interpretability. It 

is limited to text generation and does not support multimodal 

generative tasks. Future work will focus on these two issues. 

First, the interpretability of GenFS consequents will be 

enhanced by introducing intrinsically interpretable modeling 

approaches, and by mapping model parameters – decomposed 

through a Mixture-of-Experts framework – to yield 

interpretable terms. Second, research will be conducted to 

unify the modeling of multimodal input and output. To 

achieve this goal, we will convert multimodal data into unified 

term-based representations, perform inference over the 

intermediate representations, and subsequently generate 

outputs across different modalities. 
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