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Abstract
Motivation: Spatial clustering is a key analytical technique for exploring spatial transcriptomics data. Recent graph neural network-based methods have 
shown promise in spatial clustering but face notable challenges. One significant issue is that analyzing the functions and complex mechanisms of organ
isms from a single scale is difficult and most methods focus exclusively on the single-scale representation of transcriptomic data, potentially limiting the 
discriminative power of extracted features for spatial domain clustering. Furthermore, classical clustering algorithms are often applied directly to latent 
representation, making it a worthwhile endeavor to explore a tailored clustering method to further improve the accuracy of spatial domain annotation.
Results: To address these limitations, we propose m2ST, a novel dual multi-scale graph clustering method. m2ST first uses a multi-scale 
masked graph autoencoder to extract representations across different scales from spatial transcriptomic data. To effectively compress and dis
till meaningful knowledge embedded in the data, m2ST introduces a random masking mechanism for node features and uses a scaled cosine 
error as the loss function. Additionally, we introduce a tailored multi-scale clustering framework that integrates scale-common and scale- 
specific information exploration into the clustering process, achieving more robust annotation performance. Shannon entropy is finally utilized 
to dynamically adjust the importance of different scales. Extensive experiments on multiple spatial transcriptomic datasets demonstrate the su
perior performance of m2ST compared to existing methods.
Availability and implementation: https://github.com/BBKing49/m2ST.

1 Introduction
In recent years, spatial transcriptomics technologies such as 
seqFISHþ (Eng et al. 2019), MERFISH (Zhang et al. 2020), 
and Slide-seqV2 (Stickels et al. 2021) have emerged as cutting- 
edge tools for understanding cellular dynamics and their in- 
situ microenvironments. Unlike single-cell RNA sequencing, 
spatial transcriptomics captures both gene expression and spa
tial location information, enabling deeper insights into molecu
lar communication and tissue structure (Cheng et al. 2023).

Accurate spatial domain annotations form the foundation 
for subsequent functional studies. To this end, using cluster
ing methods to annotate spatial transcriptomics data has be
come a popular research direction in recent years. In addition 
to the classical K-means (Hartigan and Wong 1979), Louvain 
(Blondel et al. 2008), and Leiden (Traag et al. 2019) are used 
to partition the spatial domain. Some researchers have devel
oped some methods that use distance computation or proba
bility estimation for clustering modeling. For example, based 
on Markov random fields, Dries et al. clustered spatial 

domains by comparing intrinsic gene expression in neighbor
ing cells (Dries et al. 2021). Based on the Bayesian statistical 
method and the prior knowledge of spatial domains, Zhao 
et al. achieved the partition of spatial domains (Zhao et al. 
2021). Yang et al. introduced Hidden Markov Random 
Fields to explore spatial dependencies and the associations 
between neighboring cells (Yang et al. 2022).

All of the methods mentioned above are based on tradi
tional machine learning, while they ignore most of the valu
able spatial coordinate information. To address it, several 
deep learning-based graph clustering methods for spatial 
transcriptomics data have been proposed. For instance, Pham 
et al. realized spatial domain clustering by integrating gene 
expression normalization, spatial location and morphological 
adjustments (Pham et al. 2020). Hu et al. introduced an undi
rected weighted graph to represent the dependencies of spa
tial data and extracted hidden embedding by using a graph 
convolutional network, and finally spatial domain partition 
by using the Iterative clustering method (Hu et al. 2021). 
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Similarly, Xu et al. introduced a denoising auto-encoder and 
variational graph autoencoder to jointly learn hidden embed
ding for spatial domain clustering (Xu et al. 2022). Li et al. 
extracted hidden embedding of spatial transcriptomics data by 
using Deep Graph Infomax (Velickovic et al. 2019) and then 
introduced UMAP (Becht et al. 2018) to realize spatial domain 
partition (Li et al. 2022). Fang et al. introduced an adversarial 
graph autoencoder and pseudo-label learning mechanism for 
spatial domain clustering (Fang et al. 2024c). Moreover, some 
methods found that introducing a masking mechanism into 
the model can improve the discriminability of the learned hid
den embedding. For example, Fang et al. introduced a masking 
mechanism and contrastive learning into graph autoencoder 
for spatial domain partition (Fang et al. 2024b). Min et al. 
proposed a dual-channel masked graph autoencoder for spa
tial domain partition (Min et al. 2024). Similarly, Fang et al. 
introduced triplet learning into masked graph autoencoder to 
further improve the discriminative of hidden embedding and 
achieved great clustering performance (Fang et al. 2024a).

While these deep learning-based graph clustering methods 
have demonstrated effectiveness, significant challenges re
main. First, in the field of life sciences, understanding the 
complexity of organisms presents a significant challenge, as 
this complexity stems from their hierarchical structures and 
multidimensional interactions. Researchers are increasingly 
recognizing that relying solely on observations and analyses 
from a single level of inquiry often proves insufficient for 
gaining a comprehensive understanding of the organism’s 
functions and intricate mechanisms (Lagasse and Levin 2023, 
Ruscone et al. 2023). Meanwhile, some studies suggest that 
exploring multi-scale information enables a more comprehen
sive capture of data distributions, thereby enhancing the ro
bustness of models (Li et al. 2015, Somnath et al. 2021). 
However, existing spatial domain annotation methods are 
limited to extracting latent representations with a single scale, 
which often fails to ensure that the representations contain 
sufficient discriminative information for accurate spatial do
main partition. Therefore, how to design a novel graph neu
ral network to explore the multi-scale information within 
spatial transcriptomics data is a meaningful research issue. 
Second, current methods apply classical clustering methods 
directly to the learned representations for spatial domain an
notation, which cannot fully leverage the rich information 
embedded in the latent representations. Consequently, de
signing a clustering method tailored to the spatial transcrip
tomic representation extraction is significant to further 
enhance clustering performance and achieve more accurate 
spatial domain annotation.

To address above limitations, we propose m2ST, a 
novel dual multi-scale graph clustering method for spatial 
transcriptomics data. The proposed m2ST consists of a multi- 
scale graph masked autoencoder (MC_GMAE) and a multi- 
scale clustering method. Specifically, we first propose a novel 
self-supervised multi-scale graph masked autoencoder 
(MC_GMAE) based on the Graph Attention Network (GAT) 
(Veli�ckovi�c et al. 2017) to explore the spatial transcriptomics 
data from different scales. In the encoder network of 
MC_GMAE, which consists of a shared GAT layer and mul
tiple specific GAT layers. The shared layer is used for primary 
information exploration and multiple specific layers are used 
to explore knowledge at different scales. Corresponding mul
tiple specific GAT layers for different scales make up the de
coder network, which enhances the representation of spatial 

information across varying levels of granularity. Meanwhile, 
to further extract and condense knowledge within the spatial 
transcriptomics data, we further introduce a feature-masked 
mechanism that randomly replaces a subset of node features 
in the encoder and decoder with learnable vectors. In addi
tion, a scaled cosine error loss function is introduced to fur
ther enhance the robustness of the model. To enable more 
targeted clustering of the extracted multi-scale representa
tions and further enhance the accuracy of spatial domain an
notation, we propose a novel multi-scale clustering method. 
In this method, a dual representation learning mechanism 
based on matrix factorization is first constructed to explore 
scale-common and scale-specific knowledge across scales. 
Meanwhile, we integrate dual representation learning with 
clustering partitioning into a unified framework, allowing 
these two parts to mutually reinforce and enhance each other. 
Finally, we introduce Shannon entropy to adaptively adjust 
the importance of different representations.

We comprehensively evaluated the proposed method m2ST 
on five spatial transcriptomics datasets. Experimental results 
demonstrate that m2ST significantly outperforms state-of- 
the-art methods, proving its robustness in identifying spatial 
domains and its potential applicability to broader spatial 
transcriptomics datasets.

2 Materials and methods
2.1 The overview of the proposed m2ST
To comprehensively analyze spatial transcriptomics data, we 
propose a multi-scale spatial transcriptomics clustering 
framework, as illustrated in Fig. 1. This framework consists 
of two main components:

2.1.1 Part A: multi-scale masked graph autoencoder
First, we construct a graph G¼ V;A;Xð Þ, to to express spa
tial transcriptomics data, where V is the set of nodes, A 2
RN×N is the adjacency matrix, and X 2 Rd×N is the node 
identity matrix. N is the number of nodes and d is the feature 
dimension. Details of the graph construction process are pro
vided in the Supplementary Part S1.

To fully extract graph embeddings, we design a novel 
multi-scale masked graph autoencoder based on Graph 
Attention Networks (GAT). This autoencoder incorporates a 
masking mechanism that randomly replaces parts of the input 
feature matrix with learnable vectors. This strategy mitigates 
common trivial solutions encountered in autoencoders and 
enhances robustness. Specifically, the masked graph data is 
input into a multi-scale encoder, which is composed of a 
shared encoder and several scale-specific encoders to extract 
multi-scale latent embedding. Further, the obtained embed
dings are re-masked and passed into a multi-scale decoder to 
enhance both encoder and decoder learning ability. In the de
coder, we tailored distinct decoders for each scale of the hid
den embeddings to achieve feature reconstruction. To guide 
the learning process, we introduce a scaled cosine loss 
function that evaluates the reconstruction error between 
the original and reconstructed features. This enables effective 
self-supervised learning and ensures that the embeddings are 
both discriminative and informative.

2.1.2 Part B: multi-scale clustering
Based on the learned multi-scale embeddings, we develop a 
novel multi-scale clustering method to partition spatial 
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domains. First, a dual representation learning method is in
troduced to explore scale-common and scale-specific knowl
edge from the multi-scale embeddings. Then, a unified 
clustering framework is constructed to integrate dual repre
sentation learning and clustering process. Finally, the 
Shannon entropy is introduced to balance the importance of 
different scales. By tightly coupling dual representation learn
ing and clustering, the framework achieves optimal clustering 
performance.

Detailed descriptions of Part A and B are provided in the 
subsequent parts.

2.2 Multi-scale masked graph autoencoder
2.2.1 Node feature-masked mechanism
Autoencoder is the classic model consisting of an encoder 
and decoder, which extracts discriminative embedding 
through two primary steps: information compression and re
construction. However, traditional autoencoders may con
verge to trivial solutions (Hou et al. 2022), and existing 
graph autoencoders that target feature reconstruction usually 
ignore this issue. To address it, denoising autoencoder 
(Vincent et al. 2008) alleviates the trivial solution problem by 
corrupting the input data. Meanwhile, the feature-masked 
mechanism has been applied in some neural networks and 
spatial transcriptomics data analysis (Hou et al. 2022, 2023, 
Fang et al. 2024b, Min et al. 2024). Following these success
ful experiences. In this paper, we also introduce a feature- 
masked mechanism and construct a multi-scale masked graph 
autoencoder. We randomly select ~V � V from the set of nodes 

V and mask each of their features with a learnable vector 
Xi;½M� 2 Rd×1. Thus, the masked feature matrix ~X can be de
fined as: 

~X i ¼
X½Masked�; V i 2 ~V

Xi; V i 62 ~V

(

(1) 

Thus, the goal of the proposed multi-scale masked graph 
autoencoder is to reconstruct the masked features of nodes in 
~V based on partially observed node features ~X and the input 
adjacency matrix A. Therefore, the graph data input to the 
multiscale shielded graph autoencoder is G¼ V;A; ~X

� �
. It is 

important to note that the masking operation is applied only 
during training. During testing, the encoder directly extracts 
the embeddings without masking.

2.2.2 Multi-scale encoder
The Graph Attention Network achieves powerful graph data 
exploitation ability and has received widespread attention in 
recent years by introducing the multi-head attention mecha
nism into graph neural networks. Thus, to extract high- 
discriminative spatial transcriptomic features with different 
scales, we use GAT as the foundational model. As shown in 
Fig. 1A, the constructed multi-scale encoder consists of two 
parts: the first part is a shared encoder ~Xse ¼ fE A; ~X

� �
, which 

provides an initial representation learning of spatial tran
scriptomic data. The second part is the scale-specific encoder 
Hm ¼ fE m A; ~Xse

� �
to explore the information from different 

Figure 1. The framework of the proposed m2ST. Part A is the multi-scale masked graph auroencoder and Part B is the one-step multi-scale clustering.
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scales. In the shared encoder ~Xse ¼ fE A; ~X
� �

, which is consis
tent with the GAT. We first compute the attention coeffi
cients for each node in the graph. Then, based on these 
coefficients, a weighted sum is performed to obtain the 
updated features for each node. The flowchart of GAT is pro
vided in the Supplementary Fig. S1. A detailed explanation is 
given below, starting with the computation method for the 
attention coefficients: 

ai;j ¼
exp LeakyReLU ei;jð Þ

� �

PVi
l exp LeakyReLU ei;lð Þ

� � (2) 

ei;j ¼ g W ~XijjW ~Xj

h i

; θ
� �

(3) 

LeakyReLU ei;jð Þ ¼
ei;j if ei;j ≥0

ɛei;j if ei;j <0

(

(4) 

where ai;j is the attention coefficient obtained by normalizing 
the similarity scores of all adjacent nodes. Vi is the set of 
neighboring nodes obtained from the adjacency matrix A. 
LeakyReLU �ð Þ is the activation function and ɛ ¼ 0:01. ei;j is 
the similarity coefficient of node i and j, W 2 Rd0×d is the 
shared mapping matrix, d0 is the dimension of mapped space. 
~Xi 2 Rd×1 is the feature vector of the ith node, jj is the splice 
operation. Following (Hou et al. 2022), g �ð Þ is set as a single 
layer feedforward network and θ is the learnable parameters. 
Similar to (3), we can compute K coefficients 
ak

i;j; k¼ 1;2; . . . ;K, as multi-head attention coefficients. 
When the multi-head attention coefficients have obtained, we 
update the features of each node using the multi-head atten
tion mechanism on the graph: 

~Xi;se ¼ σ
XK

k

XVi

j
ak

i;jW
k ~Xi

� �

(5) 

where ak
i;j and Wk are the attention coefficients and shared 

mapping matrix of the kth head, respectively. σ �ð Þ is the 
PreLU activate function to enhance the flexibility of the net
work (He et al. 2015). ~Xi;se 2 Rd0×1 is the updated feature 
vector of the ith node with shared encoder.

Existing studies have shown that exploring multi-scale in
formation can provide a more comprehensive capture of data 
distribution knowledge (Li et al. 2015, Somnath et al. 2021). 
Therefore, based on GAT, we constructed multi-scale 
specific encoders to explore the information with different 
granularities. Denoting the extracted mth embedding 
Hm ¼ fE m A; ~Xse

� �
, where fE m �ð Þ denotes the mth encoder. 

Similar to fEð�Þ, the details are as follows: 

am;k
i;j ¼

exp LeakyReLU f Wk
m

~Xi;sejjWk
m

~X j;se

h i� �� �� �

PVi
l exp LeakyReLU f Wk

m
~X i;sejjWk

m
~Xl;se

h i� �� �� �

(6) 

Hm
i ¼ σ

XK

k

XVi

j
am;k

i;j Wm;k ~X i;se

� �

(7) 

where Wm;k 2 Rd0m×d0 and ak
m;i;j are the mapped matrix and at

tention coefficient of the kth head at the mth scale, respectively. 

Hm
i 2 Rd0m×1 is the mapped feature vector of the ith node with 

the mth encoder.

2.2.3 Multi-scale decoder
After obtaining the multi-scale embeddings compressed by 
the encoder, we construct a re-masked decode by following 
(Fang et al. 2024b, Hou et al. 2023, Min et al. 2024) general
ize to multi-scale decoder learning and further enhance the 
robustness of the decoder. We apply another set of masks to 
replace the previously masked node indices in Hm, i.e. 
~H

m
¼ RemaskðHmÞ. Similar to (1), ~H

m 
is defined as follows: 

~H
m
i ¼

Hm
½Masked�; V i 2 ~V

Hm
i ; V i 62 ~V

(

(8) 

This method compels the decoder to reconstruct the 
masked representations from adjacent unmasked representa
tions, which can further enhance the robustness of the 
autoencoder (Hou et al. 2023). We also use a single-layer 
GAT as the decoder for each scale data. This method allows 
the model to recover the feature of a node based on a group 
of nodes, rather than relying solely on the node itself, thereby 
supporting the encoder in learning high-discriminative 
embeddings, i.e. Zm ¼ fD m A; ~H

m� �
, where fD m �ð Þ denotes 

the mth encoder. The details are as follows: 

Zm
i ¼ σ

XK

k

XVi

j
bm;k

i;j Qm;k ~H
m
i

� �

; i ¼ 1; 2; . . . ;N (9) 

where Qm;k 2 Rd×d0m and bm;k
i;j is the mapped matrix and at

tention coefficient of the kth head at the mth scale decoder, 
respectively. Zm

i 2 Rd×1 is the feature vector reconstructed by 
the decoder at different scales.

2.2.4 Loss function
In traditional autoencoders, mean squared error (MSE) is 
typically used as the loss function (Wang et al. 2017, Park 
et al. 2019, Jin et al. 2020). To achieve a more robust model, 
we introduce scaled cosine error as the loss function by fol
lowing (Hou et al. 2022), which is shown below: 

LSCE ¼
1
M

XM

m

1
~V
�
�
�
�

X~V

i
1 �

XT
i Zm

i

kXik2 � kZ
m
i k2

 !γ

(10) 

where Xi and Zm
i ¼ fD m A; fE m A; fE A; ~X i

� �� �� �

are the orig
inal and reconstructed features. γ≥1 is the scaling factor and 
serves as a hyperparameter. The L2-norm in the scaled cosine 
error maps vectors onto a unit hypersphere, effectively en
hancing the stability of representation learning during train
ing (Grill et al. 2020).

2.3 Multi-scale clustering
2.3.1 Dual representation learning mechanism for multi- 
scale spatial transcriptomics embedding
Based on the above multi-scale masked graph autoencoder, 
we obtained multi-scale hidden embeddings Hm of spatial 
transcriptomics data, and traditional strategies can be used to 
combine embeddings from different scales for clustering. 
However, since each scale represents the data at a different 
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granularity while sharing the same objective, the multi-scale 
embeddings—similar to multi-view data—contain both 
shared knowledge across scales and unique information spe
cific to each scale (Zhang et al. 2024). Therefore, a more ef
fective mechanism is required to explore both types of 
knowledge efficiently. Denoting Hm ¼ Hmð Þ

T
; m¼

1; 2; . . . ; M and based on the matrix factorization technique, 
we propose a dual representation learning mechanism to ex
plore the common and scale-specific information from multi- 
scale data simultaneously as follows: 

min
Hc;Wm;Hm

s ;P
m

XM

m

�
�
�
�Hm � HT

c Wm � Hm;T
s Pm

�
�
�
�

2

F
þ β
�
�
�
�HT

c

�
�
�
�

2

F
þ

β
XM

m

�
�
�
�Hm;T

s

�
�
�
�

2

F

(11) 

where Hc 2 Rdc×N is the common latent representation. Hm
s 2

Rds×N is the specific representation of the mth scale. dc and 
ds are the feature dimension of the common and specific rep
resentation. Wm 2 Rdc×d0m and Pm 2 Rds×d0m is the mapping 
matrix of mth scale and β is regularization parameters. 
Furthermore, to enable the learned representations to be 
more robust, regularization terms are introduced.

2.3.2 Objective function for multi-scale clustering
In the previous section, we extract the common and specific 
knowledge among different scales, and to make the learned 
knowledge more suitable for clustering partition, a new uni
fied clustering framework is proposed by introducing 
Shannon entropy mechanism and orthogonal constraint. 
Denoting the common representation as the Mþ1 scale. The 
proposed objective function is given as follows: 

min
Hc;Wm;Hm

s ;P
m;U;Vm;αm

XM

m

�
�
�
�Hm � HT

c Wm � Hm;T
s Pm

�
�
�
�

2

F
þ β
�
�
�
�HT

c

�
�
�
�

2

F
þ

β
XM

m

�
�
�
�Hm;T

s

�
�
�
�

2

F
þ
XM

m
αm
�
�
�
�Hm

s � VmU
�
�
�
�

2

F
þ αMþ1

�
�
�
�Hc � VMþ1U

�
�
�
�

2

F
þ

λ
PMþ1

m

�
�
�
�Vm;TVm � I

�
�
�
�

2

F
þ δ

XMþ1

m
αmlnαm

s:t: αm ≥0;
XMþ 1

m
αm ¼ 1;Ui;j 2 0;1f g;

XC

i¼1

Ui;j ¼ 1

(12) 

where the fourth and fifth terms are clustering terms 
(Hartigan and Wong 1979), VMþ1 2 Rdc×C and Vm 2 Rds×C 

(m¼ 1;2; . . . ;M) are the clustering center of the common and 
specific representations, respectively. C is the number of clus
ters. U 2 RC×N is the cluster indicator matrix. When the jth 
instance is clustered into the ith class, Ui;j ¼ 1, otherwise, 
Ui;j ¼ 0. αm is the weight for different representations. I 2
RC×C is the identity matrix. β;λ; δ≥0 are parameters. In (12), 
the interplay between the extracted common and scale- 
specific representations and the learned cluster indicator 
matrix fosters a reciprocal enhancement process. The repre
sentations improve clustering performance, while the cluster 
indicator matrix enhances the discriminatory power of the 

representations. The detailed description and optimization 
process for (12) is presented in the Supplementary Part S2.

Based on the above description and analysis, the algorithm 
description of m2ST is given in the Supplementary Part S3.

3 Results
3.1 Experiments setting
3.1.1 Datasets
We conduct extensive experiments on six datasets [DLPFC 
(Pardo et al. 2022), Breast cancer (Xu et al. 2024), STARmap 
(Wang et al. 2018), Mouse hippocampus (Palla et al. 2022), 
Mouse cerebellum (Rodriques et al. 2019, Shang and Zhou 
2022), and Human Heart (Xue et al. 2024)]. These data 
cover a range of sample sizes from several thousand to several 
tens of thousands, facilitating a comprehensive evaluation of 
the performance and scalability of our method. The statistics 
and detailed described of these data are given in 
Supplementary Part S4.

3.1.2 Evaluation metrics and parameters setting
To comprehensively verify the effectiveness of m2ST, we fol
low (Cai et al. 2013) and adopt NMI, ARI, and Purity as 
evaluation metrics, where higher values indicate better per
formance. Meanwhile, for datasets without ground truth, the 
Silhouette Coefficient (SC) (Scrucca et al. 2016) and Davies– 
Bouldin (DB) (Blondel et al. 2008) are used as evaluation 
metrics. Specifically, a higher SC value represents better clus
tering performance, while a lower DB value indicates better 
performance. In addition, detailed parameters setting and 
evaluation metrics are given in Supplementary Part S4.

3.2 Experimental results
3.2.1 Experimental results and analyses on the 
DLPFC dataset
First, we compared m2ST with nine state-of-the-art spatial 
clustering methods [SpaGCN (Hu et al. 2021), DeepST (Xu 
et al. 2022), BayesSpace (Zhao et al. 2021), Seruat (Hao 
et al. 2021), STAGATE (Dong and Zhang 2022), CCST (Li 
et al. 2022), stAA (Fang et al. 2024c), STMGAC, and 
stCMGAE] on the DLPFC dataset. This dataset consists of 
12 slices, and we conducted a comprehensive comparison 
across all 12 slices. Figure 2A shows the results of all methods 
on the ARI metric, and these results of all methods are given 
in Supplementary Fig. S2. From the results, it can be seen that 
m2ST consistently outperforms others across all three met
rics, with a particularly significant advantage in the ARI met
ric. Compared to graph autoencoder based methods 
(SpaGCN, stAA, CCST, DeepST), the performance of m2ST 
is the best, suggesting that exploring the multi-scale informa
tion simultaneously is effective. Meanwhile, Fig. 2B presents 
the visualization results of m2ST on 151672 slices, and rest 
visualization results of all the methods are also given in 
Supplementary Fig. S3. From Fig. 2B and Supplementary Fig. 
S3, it can be seen that the clustering delineation of the pro
posed m2ST method is the best, indicating its ability to accu
rately identify the spatial domain structure of cells. Notably, 
compared to other methods, m2ST demonstrates optimal rec
ognition performance for the case of Layer_3. Finally, we 
present the UMAP plot and PAGA trajectory inference (Wolf 
et al. 2019) results of the proposed m2ST in Supplementary 
Fig. S3B and C. The UMAP result clearly shows that each 
layer exhibits distinct regions, indicating that the m2ST 
method effectively separates domains across different layers. 
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Moreover, the PAGA graph reveals a linear trajectory from 
WM to Layer 3, demonstrating that the developmental trajec
tory inferred by m2ST aligns with the spatial topology of 
the slice.

3.2.2 Comparison of the proposed method on breast cancer, 
STARmap datasets with SOTA spatial clustering methods
Subsequently, we conducted comparisons and analyses with 
several advanced methods on two representative labeled 

Figure 2. Comparison results on the DLPFC. (A) Clustering results for all methods on ARI metric. (B) Visualization results of m2ST on slice 151672.

Figure 3. Comparison results on the Breast cancer and STARmap dataset. (A) and (B) Clustering results and visualization results on the Breast cancer. 
(C) and (D) Clustering results and visualization results on STARmap dataset.
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datasets (Breast cancer and STARmap datasets). First, 
Fig. 3A shows the spatial domain partition results on the 
Breast Cancer dataset. Second, Fig. 3B and Supplementary 
Fig. S4 present the visualization results of the all methods. 
The visualizations show that m2ST achieves better spatial do
main segmentation results, with many clusters aligning well 
with manual annotations, such as the Tumor_edge_2, DCIS/ 
LCIS, IDC_2, IDC_4, and IDC_5 domains. Specifically, for 
the IDC_5 domain, methods such as stCMGAE, CCST and 
stAA clustered it into multiple domains.

We further validated the effectiveness of the proposed 
m2ST method on the STARmap dataset. First, Fig. 3C shows 
the clustering results of eight methods on three metrics. 
Meanwhile, Fig. 3D and Supplementary Fig. S5 presents the 
visualization results of all methods. From the results, it is evi
dent that m2ST accurately partitions the STARmap dataset 
into seven spatial domains, providing a solid foundation for 
subsequent studies. Meanwhile, the results demonstrate that 
the proposed m2ST outperforms all other methods in terms 

of ARI. Although it is slightly weaker than CCST in NMI 
and stCMGAE in Purity, m2ST significantly surpasses CCST 
and stCMGAE in the other two metrics, which further con
firms the benefits of exploring multi-scale information.

3.2.3 Comparison of the proposed method with the SOTA 
spatial clustering methods on mouse hippocampal, mouse 
cerebellum, and human heart datasets without ground truth
For unlabeled dataset, m2ST is compared with seven methods 
(STAGATE, SpaGCN, DeepST, CCST, stAA, STMGAC, and 
stCMGAE) on the unlabeled mouse hippocampus and mouse 
cerebellum dataset. First, we present the comparison with all 
methods on the mouse hippocampus dataset. The values of 
SC and DB metrics of these methods are given in Fig. 4A. It 
can be seen that the proposed m2ST outperforms the other 
methods on the SC metric, particularly surpassing SpaGCN 
by nearly 5%. At the same time, on the DB metric, the value 
of m2ST is much lower than the other methods (lower values 
indicate better performance), which further validates the 

Figure 4. Clustering results on datasets without ground truth. (A) shows the results on the Mouse hippocampus dataset; (B) shows the results on the 
Mouse cerebellum dataset; and (C) shows the results on the Human heart dataset.
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effectiveness of our method on unlabeled datasets. 
Supplementary Figs S6 and S7 also shows the visualization 
results of all methods. From the Supplementary Fig. S7, it can 
be seen that m2ST has the clearest spatial delineation effect. 
Furthermore, the mouse hippocampus consists of three main 
regions: Cornu Ammonis 1 (CA1)/CA2, Cornu Ammonis 3 
(CA3), and the Dentate Gyrus (DG), as shown in the first im
age of Supplementary Fig. S7 (Sunkin et al. 2013). From the 
Supplementary Fig. S7, it can be seen that m2ST demon
strates the ability to accurately identify these three regions.

Furthermore, the clustering results of eight methods on the 
mouse cerebellum and Human heart datasets are presented in 
Fig. 4B and C. Meanwhile, the visualization results of all 
methods are presented in Supplementary Figs S7 and S8. 
From the visualization results, m2ST, along with STMGAC, 
stCMGAE, and stAA, can accurately delineate the major 
regions of the mouse cerebellum and human heart. However, 
in terms of quantitative metrics, m2ST achieves a signifi
cantly higher SC value and a much lower DB value compared 
to other methods. Overall, these results demonstrate that 
m2ST exhibits superior clustering performance.

3.2.4 Unveiling cancer heterogeneity with the annotated 
breast cancer dataset
Based on the clustering annotations of breast cancer, we ex
plored clusters 14 and 15 to explore the cancer heterogeneity. 
We first performed differential gene expression analysis be
tween these two clusters. As shown in Supplementary Fig. 
S10, genes such as COX6C, XBP1, and HSP90AB1 were 
highly expressed in cluster 14. Notably, COX6C and 
HSP90AB1 have been reported to promote cancer cell prolif
eration (Haase and Fitze 2016, Liu et al. 2024). 
Consequently, cluster 14 is identified as a malignant region, 

consistent with the ground truth labels, further demonstrat
ing that m2ST can accurately localize cancerous areas.

To gain deeper insights, we conducted a Gene Ontology 
(GO) enrichment analysis. Figure 5 presents the top five 
enriched GO terms in cluster 14, including negative regula
tion of transforming growth factor beta production, negative 
regulation of endoplasmic reticulum stress-induced intrinsic 
apoptotic signaling pathway, and mitochondrial electron 
transport, cytochrome c to oxygen. These results suggest that 
cluster 14 cells rapidly proliferate and exhibit enhanced im
mune evasion (Colak and Ten Dijke 2017, Schonthal 2012). 
Similarly, we analyzed cluster 15 and the analysis results are 
given in Supplementary Fig. S11. The results show an enrich
ment of GO terms such as T cell apoptotic process and regu
lation of Acyl-CoA biosynthetic process. This indicates that 
cluster 15 represents an immunosuppressive, tumor- 
promoting microenvironment, which may facilitate tumor 
progression and metastasis (Uzzo et al. 1999, Mashima et al. 
2009). Therefore, m2ST effectively describes intratumoral 
heterogeneity within tumor regions, providing insights into 
both the growth state of cancer cells and the tumor- 
associated microenvironment at the tumor margin.

3.2.5 Unveiling neural spatial features with the annotated 
mouse cerebellum dataset
We further analyzed the mouse cerebellum dataset to explore 
neural spatial features. We examined the differential gene ex
pression between cluster 8 and other clusters. As shown in 
Fig. 6 the genes, i.e. Sparcl1, Slc1a3, and Gria1, are highly 
expressed in cluster 8. These genes are closely associated with 
neuronal functions and the regulation of glial cells in the ner
vous system (Kaczmarczyk et al. 2021, Bartelt et al. 2023). 
Meanwhile, according to (Shang and Zhou 2022), cluster 8 
corresponds to the cerebellar granule layer, indicating that 

Figure 5. The enriched GO terms in cluster 14 of the Breast cancer dataset.
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these genes are primarily enriched in cluster 8 rather than 
other clusters. Additionally, we conducted GO enrichment 
analysis (Wu et al. 2021) in Supplementary Fig. S6, and our 
analysis revealed that cluster 8 is significantly enriched in bio
logical processes and cellular components related to ion 
transport and membrane functions, including GO terms such 
as monoatomic ion transport, plasma membrane, and extra
cellular space. Notably, these GO terms exhibit associations 
with the genes Gprin3 and Cemip. These results are consis
tent with those found in previous work (Rodriques et al. 
2019). Specifically, these genes are novel spatially patterned 
genes, which are discovered by (Rodriques et al. 2019) and 
show specific localization to the granule layer. This further 
validates that m2ST has a strong capability for spatial tran
scription data mining.

3.3 Ablation studies
To further validate the effectiveness of the introduced multi- 
scale learning mechanism, masked mechanism, and multi- 
scale clustering method in the proposed m2ST, we conducted 
ablation experiments on three labeled datasets, i.e. DLPFC, 
Breast cancer, and STARmap. Denoting m2ST1 as the model 
with the masked mechanism, multi-scale learning, and multi- 
scale clustering removed, m2ST2 as the model with the 
masked mechanism and multi-scale clustering removed, 
m2ST3 as the model with multi-scale clustering removed, and 
m2ST4 as the model using the MSE loss. The experimental 
results on the ARI metric are presented in Table 1 and these 
results are given in Supplementary Table S2. Since the 
DLPFC dataset consists of 12 slices, we record results across 
all 12 slices and report the mean results for comparison. As 
shown in Table 1 and Supplementary Table S2, m2ST1 and 
m2ST4 is the worst in most cases, indicating that multi-scale 
learning and scaled cosine error can greatly improve spatial 
domain partition. In addition, the performance of m2ST2 is 
inferior to the m2ST3, suggesting that the masked mechanism 
aids the model learn more discriminative representations. 
Finally, m2ST is optimal in all cases, which indicates that all 
three proposed mechanisms contribute to improved spatial 
domain partition.

3.4 The impact of different masked rates and 
scale numbers
To investigate the effect of different rates of masking and dif
ferent scales on m2ST, we conducted experiments on the 
Breast Cancer, STARmap, and DLPFC-151672 datasets. The 
experimental results are shown in Supplementary Figs S13 
and S14. As seen in Supplementary Fig. S13, the trends across 
the three metrics are consistent, with the best performance 
observed when the rate of masking is between 0.5 and 0.7. 
Moreover, Supplementary Fig. S13a demonstrates that when 
the masking rate is either too high or too low, the perfor
mance of the method deteriorates. This suggests that the ap
propriate rate of the masked feature vectors can enhance the 
robustness of the model. Then, as shown in Supplementary 
Fig. S14, the spatial domain partitioning demonstrates sub
optimal performance when the number of scales is set to 1. 
With an increasing number of scales, the partitioning perfor
mance improves. However, it is also evident that more scales 
do not necessarily lead to better results. For example, the per
formance with 5 scales shows no significant improvement 
compared to 2 scales. Consequently, selecting 2–3 scales 
emerges as a robust choice for modeling.

4 Conclusion
In this study, we propose m2ST, a novel dual multi-scale 
graph clustering framework consisting of a multi-scale graph 
autoencoder and a multi-scale clustering method. Extensive 
experiments on five spatial transcriptomic datasets demon
strate m2ST’s superior performance over existing methods. 
Despite its strengths, m2ST still has several limitations. It 
relies on a pre-constructed adjacency matrix, which can be 
memory-intensive for large datasets, and separating adja
cency matrix construction from spatial domain partitioning 
may lead to sub-optimal results. Additionally, treating multi- 
scale embedding learning and clustering as separate steps lim
its accuracy, and the model’s dependence on hyperpara
meters, such as learning rate and masking rate, affects 
robustness. These limitations will be addressed in our fur
ther work.
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Table 1. The ablation study results on ARI metric (The bold values 
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m2ST1 0.1017 ± 0.0808 0.4400 0.2436
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m2ST 0.5654 ± 0.0720 0.6475 0.6100

Figure 6. The differential expression genes of cluster 8 and other clusters 
of the Mouse cerebellum dataset.
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